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4.1 RESULTS - MONTE CARLO SIMULATION

● The ISR technique is the most widely used 
ground-based method for estimating ionospheric 
plasma parameters, recovered by matching the 
measured autocorrelation function of the backscattered 
signal with a theoretical model.

● Based on single-particle statistics and a nonlinear 
Langevin equation, Milla and Kudeki (2011) developed a 
new model that incorporates the physics of Coulomb 
collisions between plasma particles, effects that become 
significant only at small aspect angles..
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Figure 1: Typical ISR spectrum (right) and ACF (left) curves with associated electron 
temperature dependency.

Figure 2: Schematic of a Coulomb collision process 
between two charged plasma particles.

● A fundamental aspect of Coulomb collisions is the 
long-range nature of the electric force between two 
charged particles, leading to a broad spectrum of 
particle deflections.

● Because the effect of these deflections varies for each 
collision, only a statistical description provides 
meaningful information about the overall plasma 
behavior, represented by: 

● The Fokker-Planck equation is commonly used to describe 
the stochastic nature of the Coulomb collisions. Due to its 
high dimensionality, solving it becomes computationally 
demanding. Instead, an equivalent mathematical 
formulation known as the Langevin equation can be used:

Figure 3: A 400 us simulated electron trajectory 
undergoing friction, diffusion and gyromotion effects.

1. Friction: constant loss 
energy.

2. Diffusion: fluctuating 
random force. 

3. Gyromotion: helical 
motion around B field 
z-axis.
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Complementary perspectives of 
the same physical process.

I) Coulomb Collisions:

a) Friction Coefficient:

b) Diffusion Coefficient:

Here H and G are known as 
the Rosenbluth potentials.

● The RDI4WM higher-order SDE solver have been used to solved the Milla & Kudeki model for the electron particle 
dynamics, showing a better performance among the other algorithms.
● Numerical instability, caused by the stiffness of the Langevin equation due to large friction and diffusion coefficients, 
was mitigated by employing a small fixed time step of dt =1e-8. 
● To reduce the number of required simulations for exploring the full parameter space, a 3D Gaussian process 

regression technique was used to recover the autocorrelation function based on the proposed SDE solver.

● Although the Fokker-Planck and Langevin equations 
represent different formulations, they ultimately describe 
the same underlying dynamics. The critical aspect of this 
new approach is the inclusion of a  Brownian motion 
term (dW). 

Motivation:
1. This approach force the use of small time-step 

discretization generating  a large computational time 
and low efficiency, limiting it use as a regular parameter 
estimation tool.

2. In this work, we improve the numerical scheme  by using   
higher-order stochastic differential equation solvers. 

3. Additionally, Gaussian regression techniques are used to 
reduce the number of parameter configurations needed 
to produce the ISR library.

F.T.

● The previously stated Langevin equation cannot be solved 
analytically and must be approached numerically. To 
address this, we employ a higher-order Stochastic 
Differential Equation (SDE) algorithm that eliminates the 
need for small time-step discretizations.

● In Figure IV,  a weak convergence test shows the 
relationship between the precision and computational 
time-step discretization.

● We identify that the RDI4WM algorithm has the fewer 
error measurement from solvers listed in table I, better 
than the EM algorithm used by Milla and Kudeki.

Radial Basis Function (RBF) Kernel:

● Since the Langevin equation only describes the trajectory of a 
single particle, we require a large amount of computations to 
recover the statistics needed for computing the ACF, both in the 
parallel (l) and perpendicular (p) directions with respect to the B 
field:

The new algorithm allows a stable evolution of the Langevin equation, 
with fixed time step.

Figure 4: Weak order of convergence (q) analysis for 
algorithms Listed in Debrabant & Robler (2010) Table1: : List of Stochastic Solvers.

Figure 6: Gaussian Regression interpolation for calculating the ACF. Right panel shows the results with 
constant electron temperature, while left panel maintain a fix magnetic aspect angle.

Figure 5: Top figure shows a simulation for a correlated time of t = 1 ms and an aspect 
angle of α = 1.0°. Bottom figure shows a simulation for t = 2.5 ms and aspect angle of α = 

0.5°. In both cases we compare with previous models.

Simulation Details

● Trajectories: 5000

● dt = 1e-8 (fixed)

● Simulation time: 2.5 ms

● Exe. Time = 20 min

● Cores: 32

● Mem. Allocation: ~5 Gb Ram

Performance:

● The advantage of using the Langevin equation lies in its ability to 
efficiently handle the large number of simulations required to generate 
the autocorrelation curves. However, each set of plasma parameters 
produces a distinct ACF, making it computationally expensive to cover the 
full parameter space. To address this, we employ a specialized 
interpolation method known as Gaussian Process Regression (GPR).

● GPR relies on a kernel function to define the 
correlation between points in parameter space, 
allowing smooth interpolation based on limited 
observations.

● Figure 6 illustrates the implementation of Gaussian 
Process Regression (GPR) over a three-parameter 
space (Te. α, τ). The white circles represent 
simulation data points.

● Using a radial basis function (RBF) kernel, we 
interpolate the autocorrelation function across the 
entire parameter space, avoiding the computation 
of every individual parameter configuration 
explicitly.

The motion is driven by:


