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Abstract _ |
This study presents a mapping of high-latitude ionospheric total electron content (TEC) on 2. TEC Mapping Formulation

March 23, 2023. ngh Iatitudes, particularly polar regions, are inadequately covered by Assuming VTEC is constant within the grid, forming a 1-deg by 1-deg global VTEC map, the relationship between the VTEC and sTEC
- - - - - measurements can be expressed as,
ground-based GNSS receivers for 1onospheric observation. To address this, the study P
Investigates the integration of space-based GNSS measurements from Spire Nanosatellites to Vi = Lj=1 Ay + Biey )
- - - - TP CIp where y; is the iI-th sSTEC measurement, x; Is the unknown vTEC at the J-th grid, A;; Is the functions that relates y; and x; and comprises of two
Improve the 2D mappmg of \_/ertlcal TEC. The data USGd _mCIUde Im_e of Slght (LOS) TEC elements: the fraction of electron content («;;) and the vertical-to-slant TEC mapping function (f;;), B; Is the mapping factor that assigns each
measurements from the Madrigal database, as well as radio occultation (RO) and grazing- observation to its profile's bias, and e; is the error for the i-th measurement which is the combination of the measurement noise, receiver DCB,
- - - unavailable leveling factor Z, etc. Note that each RO profile shares a single common bias. N is the number grids passed through the LOS (line-of-
angle GNSS reflectometry (GNSS-R) measurements from Spire Nanosatellites. During the sight) ray path. Only the nearest grid point was considered along the LOS path.
selected period from 09:30-10:00 on March 23, there were 120 sets of RO and 137 sets of Eq. (4) can also be written in the matrix form,
- - - X
grazing-angle GNSS-R data available. Using all these measurements, we formulated a 2D v =[4B][]] (5)
TI_EC mapping probler_n for high Iatltudes_ (e.g., northern hemlsphere latitudes > 45 degregs) W] [@aBur aafry -« Gmbim]  [Puibi, < bip]  [M]  [er
with a spatial resolution of 1-degree latitude by 1-degree longitude. The electron density where¥ = 2| a=|®21Bar e | g fBan e e | %2 |2 | s the number of measurements, p is the
orofiles simulated by the Whole Atmosphere Model are employed to support the use of space- Vol aniBus o GmBam) by o bl lxml  lem.
nased GNSS. The detailed methodology, mapping results, and some comparative analysis will humber of RO profiles, and m is the number grids.
Therefore
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2023/03/23 09:30-10:00 where A is the regularization parameter which serves to control the balance between fitting the data and suppressing large values coming from
~ Py W - - 50 overfitting or numerical instability caused by ill-conditioned matrices. It typically occurs in the grid where data Is sparse.
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Spire Global Nanosatellite Constellation 20 =
Spire Global operates up to a few tens of nanosatellites for 12 " % :
GNSS radio occultation and grazing-angle reflectometry. . § |
These nanosatellites are equipped with multi-use radio : 0 < o | Niotal
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- pressure-sigma grid, with a model top of
data NCAR CEDAR data system, (Sica et al. 1988) approximately 3 x 10-7 Pa (typically 400-600km) ) ) ) ) )
2. GNSS-RO (radio occultation) The STEC data were converted to vertical TEC (VTEC) _ (a) Madrigal vIEC map -(1-deg. product) (b) Madrigal vTEC and Spire tangent polits and reflectometry ipp
. _ by assuming a slab ionosphere at 350 km. This means *+ The IPE model provides the plasma component 2023/03/23 09:30-10:00 2023/03/23 09:30-10:00
3. GNSS-R (Grazing angle GNSS reflectometry): one set  {jat only elevation needs to be considered in mapping of the atmosphere. It is a time-dependent, global 180 E
of direct line-of-sight (DLOS) and reflected signals at sTEC to vTEC. 3D model of the ionosphere and plasmasphere : 60 60
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B = (@) 1-deg-by-1-deg Madrigal vTEC map published by NCAR CEDAR data system during 09:30-10:00UT.
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TEC is a line integral of electron density on a path between the transmitter (Tx) and receiver (Rx). The path separation between the two signals is 140 _ ' : 1
usually small, and the assumption is often made that they both travel along the same straight line. The TEC can be estimated by forming the |35 ol | | J' | | | | 0
geometry-free combination (Teunissen & Montenbruck, 2017; Angling et al., 2021). The RO antennas onboard the Spire STRATOS payload 5 45 50 55 60 65 70 75 80 85 90
measured the atmospheric excess phases on L1 and L2 channels. Given L1 and L2 excess phases and pseudorange, sSTEC estimated from phase 130 8 Geodetic latitude (°N) .
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where f, and f, are L1 and L2 frequency, ¢, and ¢, are L1 and L2 excess phases in cycles, P; and P, are L1 and L2 pseudorange in meters, and = 20 : i,‘ ;5. ,
DCB,, and DCB;, are the differential code bias of the receiver and the transmitter. e ST Lo ; \
: A e * . -‘ ad 192
SsTECp is an absolute measurement, while it is noisy due to multipath and to limitations of the receiver front end bandwidth. sTEC; has less noise 0 ) 4«’% “‘{‘_-'? hot
but includes ambiguity (Z), which is the bias between pseudoraange and carrier phase measurements. One approach to obtain the bias is to level "o

the phase TEC to the pseudorange TEC by simply modifying the mean value, S umm ary s 50 55 60 65 70 75 80 85 o0
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L= ®) "« With Spire LOS STEC measurements, the VTEC map has been effectively improved,
where N is the number of measurements. particularly over the region around 120-180°E, where the Madrigal data were previously
limited.
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