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Introduction and Data

The Ham Radio Science Citizen Investigation (HamSCI) joins sci-

entists and volunteers to collect data as part of a personal space

weather station (PSWS) project. As part of the PSWS network,

the distributed array of high frequency Grape receivers record

Doppler shifted signals from national time standard stations such

as WWV in Fort Collins, Colorado. The recorded Doppler shift is

a result of the signal passing through the earth’s atmosphere and

therefore provides insight into the state and variability of the iono-

sphere. The Grape network includes Grape 1 Doppler receivers,

as well as multi-channel Grape 2 and WSPR (Weak Signal Propa-

gation Reporter) Grapes which generate spectral data.

Figure 1. Map of stations active during the 2025 eclipse.

Ionospheric measurements are sparse by nature and can’t give

a complete picture of the ionosphere. Similarly, although there

are extensive models of the ionosphere, they don’t replicate the

variability and real-time conditions that data indicates. Therefore

reconstruction of an ionospheric event, such as the activity dur-

ing the 2023 and 2024 solar eclipses, can benefit from incorpo-

rating measured data into assumed prior models to estimate the

value of a measurement. This poster examines the construction

of the Grape inverse problem and mathematical algorithms and

techniques to produce an approximation of the ionospheric state

during an event.

Figure 2. (Left) Basic

ionospheric signal propagation

model for a Grape receiver.

Image from Kristina Collins,

KD8OXT (2021).

To begin, we note that theDoppler shift, or frequency change from

transmission frequency, measured by a Grape receiver assumed to

be caused by either movement in the ionospheric layers or change

in the width of the layers. Therefore, we have a large amount of

uncertaintywhich is represented mathematically in terms of prob-

ability distributions.

Bayesian Methods of Assimilating Data

In the case of a Grape receiver, we know that there is an originating continuous-time signal, s(t), that passes
through an unknown system (the ionosphere) and is then received as a stored discrete vector, b. Therefore we have
the structure of an inverse problem,

Ax + e = b

where A ∈ Rm×n is an unknown transform, e ∈ Rm is an additive noise vector, and x ∈ Rn is the discrete version of

the original signal. We can begin to fill in information about the system using data and assumptions.

Bayesian methods are sensitive to prior assumptions, or beliefs held about the solution to a problem. for example,

if we believe that the solution to a problem will be smooth up to a certain order, then we enforce these beliefs on

the solution to fill in unknown information.

Figure 3. (Left) Example a Whittle-Matérn prior

generated with a correlation length around 30.

The prior assumes uniform scaling in both

directions and is derived using a discrete

Laplacian approximation [1].

Figure 4. (Right) An example of a stratified prior

with boundary conditions. This is similar to a

two dimensional Gaussian prior except that the

horizontal and vertical components can be

separately scaled.

Since our signal is received in a particular order, we may characterize this as a stochastic process where we can

observe only secondary measurement (Doppler frequency) which is related to a more difficult measurement. As

data becomes available, we can use it to perform Bayesian filtering [1], by applying the observation to refine a prior

distribution.

The Kalman Filter is an iterative process that allows us to update our estimates given a sequence of observations.

Consider a stochastic process H0, H1, . . . in Rn and an observation process B1, B2, . . . taking on values in Rm such

that

Ht = FHt−1 + Vt Bt = AHt + Wt

where t is an iteration, F ∈ Rn×n and A ∈ Rm×n, and we assume the following are normally distributed random

variables [1]

H0 ∼ N (h0, D0) Vt ∼ N (0, Γt) Wt ∼ N (0, Σt)

which are mutually independent. We can formulate a prediction step based on the last mean, E(Ht−1) = ht−1, and

the covariance of Ht given the prior observations, B1, . . . , Bt−1

ĥt = Fh̄t−q D̂t = FDt−1F
T + Γt

we note that

Kt = D̂tA
T (AD̂tA

T + Σt)−1

is called the Kalman Gain Matrix. We can use the gain to update our prediction for the next mean and covariance

according to the next observation, bt

ht = ĥt + Kt(bt − Aĥt) Dt = D̂t − KtAD̂t

The measurement residual, ∆t = bt−Aĥt gives us am idea of howwell the current state predicted the next measured

state.

The ensemble Kalman filter combines the evolution-observation

of a Kalman filter with the sample-evolution method of a particle

filter to apply the evolution to each of a set of distribution

samples.

Figure 5. Example of a spectrogram for Grape 1 data in the Digital Radio

Frequency (DRF) format. Data was recorded during the 2024 eclipse by Bob

Reif in Massachusetts.

Additional work needs to be done to incorporate spatial

correlations between the Grape network stations. This is to fit

the assumption that nearby stations also measure similar sections

of the ionosphere. Future work should also include Grape 2 data,

which is still being retrieved and uploaded to a central location.
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