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Abstract

Atmospheric gravity waves (AGWSs) play a fundamental role in the vertical coupling
of the lower atmosphere and the Ionosphere—Thermosphere (IT) system, driving
momentum and energy upward and inducing 1onospheric variability. AGWs are also
believed to seed nighttime medium-scale traveling 1onospheric disturbances
(MSTIDs), often linked to electrodynamic instabilities such as the Perkins instability.
However, direct observations of mesospheric GW-TID coupling have been limited
due to the lack of global-scale, high-resolution measurements near the mesopause. In
this study, we utilize radiance measurements from NASA’s Atmospheric Waves
Experiment (AWE) aboard the International Space Station, providing unprecedented
global coverage near ~87km. We assess AGW-ionospheric coupling over the
Continental U.S. using a swath-to-swath comparison of AWE-derived radiance
variance and GNSS-based vTEC variance (5—40 min bandpass) during 2024. Strong
correlations (r>0.7) are observed primarily under quiet geomagnetic conditions
(Kp <3, AE <500 nT, Dst<-30nT), with enhanced coupling between 00—03 LT and
during summer months, particularly July.

Science Question: How do AGW-driven perturbations manifest in ionospheric TEC variability?
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Results: AWE-GNSS Swath Comparisons
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Statistical Analysis
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Local Time Dependence of Coupling
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Figure 4:

(a) Seasonal and (b) LT
distribution of strongly coupled
swaths (r>0.6).

(c) Correlation strength (r)
under quiet vs. strong forcing.
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* Some high-correlation swaths also occur under strong forcing,
suggesting additional factors influence coupling.
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Investigate the global climatology of AGW-TID coupling,
focusing on how seasonal drivers and background atmospheric
conditions modulate wave propagation and 1onospheric response.
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