

Introduction A quasi 6-day westward planetary wave (Q6DW) is a fast westward propagating **Rossby wave** event having periods of ~ 6 days and wave number 1. **Q6DW** plays a critical role in linking the lower atmospheric forcing to ionospheric variability [1,2] There are more Q6DW events showing up in the ionosphere when compared to Q6DE [3] **Motivation**

- The ionosphere is seen to change from one day to the (a) other. This region is embedded inside the thermosphere and the IT system accommodates satellites in Low-Earth orbit, where these satellites are subject to satellite drag due to the variability of this system
- Some of the modulations of the ionosphere can be caused by wind or magnetospheric/geomagnetic Sun or solar processes. Below the ionosphere, lower atmospheric waves (planetary wave, tides, gravity wave) can internally modulate this region. A prime example of planetary wave like oscillation in the ionosphere internally driven from the lower atmosphere is **Q6DW**
- Motivation: Are there any evidence of **Q6DW** showing up at **upper** thermospheric and ionospheric **F-region** altitudes? Does SD-WACCM-X agree with observations of Q6DW at these altitudes?

Figure 2 (a) Electron Densities at ~350 km altitude from COSMIC-GIS at 15:00 LT on March 20 (top panel), 22 (middle panel), and 24 (bottom panel), 2020. The geomagnetic equator is indicated by the curved red line, and the two curved black lines depict the ±20° geomagnetic latitude (b) Extracted from NASA's Goddard Space Flight Center and Mary Pat Hrybyk-Keith. Accessible at https://svs.gsfc.nasa.gov/12960/ (c) Pictorial summary of the motivation for this work. The altitudes are approximate, and they are not drawn to scale

Data and Methods

Instruments

The ICON mission explores the connection between the Earth's atmosphere and ionosphere while traveling eastward and continuously imaging the thermosphere and ionosphere. MIGHTI retrieves neutral winds between 90-300 km, Ion Velocity Meter (IVM) measures plasma density, ion velocity, and ion temperature in-situ, Far Ultra-Violet (FUV) measures O 135.6 nm and N₂ LBH airglow as a means of retrieving $\Sigma O/N_2$, and limb profiles of O and N₂ and O+ density at night, and Extreme Ultra-Violet (EUV) measures EUV O+ airglow at 61.6 nm and 83.4 nm in order to retrieve O+ density during the day [4,5]

The GOLD mission tracks how the neutral atmosphere and ionosphere respond to forcing from the Sun, magnetosphere and lower atmosphere. At \sim 160 km GOLD measures O/N₂ and neutral temperature (Tdisk) and its extended limb observations measure atmospheric emissions

Figure 4. Credit: NASA

The SABER instrument onboard NASA's TIMED satellite measured kinetic temperatures that retrieved from measurements of CO_2 emissions at 15 and 4.3 µm wavelengths within the altitude range of \sim 20–120 km at a vertical resolution of \sim 2 km [9]

Data

The data used in this study include:

ICON-MIGHTI L3 Zonal and Meridional Wind | L3 Temperature | ICON IVM | O/N₂ | Airglow Brightness | GOLD O/N₂ and Tdisk | WACCM-X FORMOSAT-7/COSMIC-2 IVM and GIS Electron Density | SABER Temperature | NASA's OMNIWeb F10.7 and Kp index | Madrigal GNSS TEC

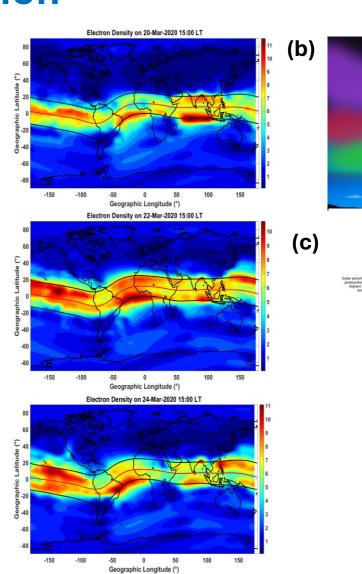
Methods

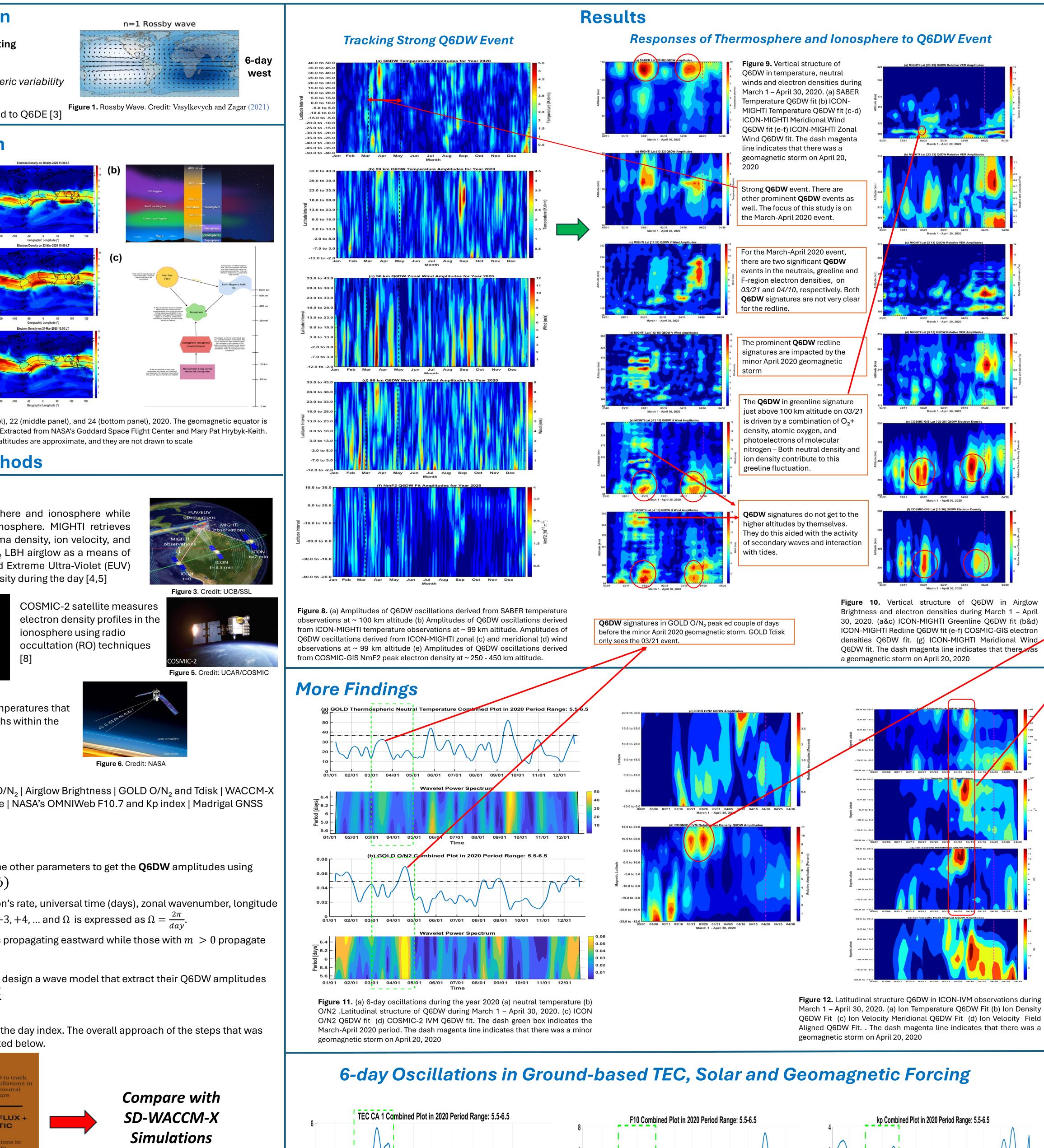
Engineering, 3756, 277–288.

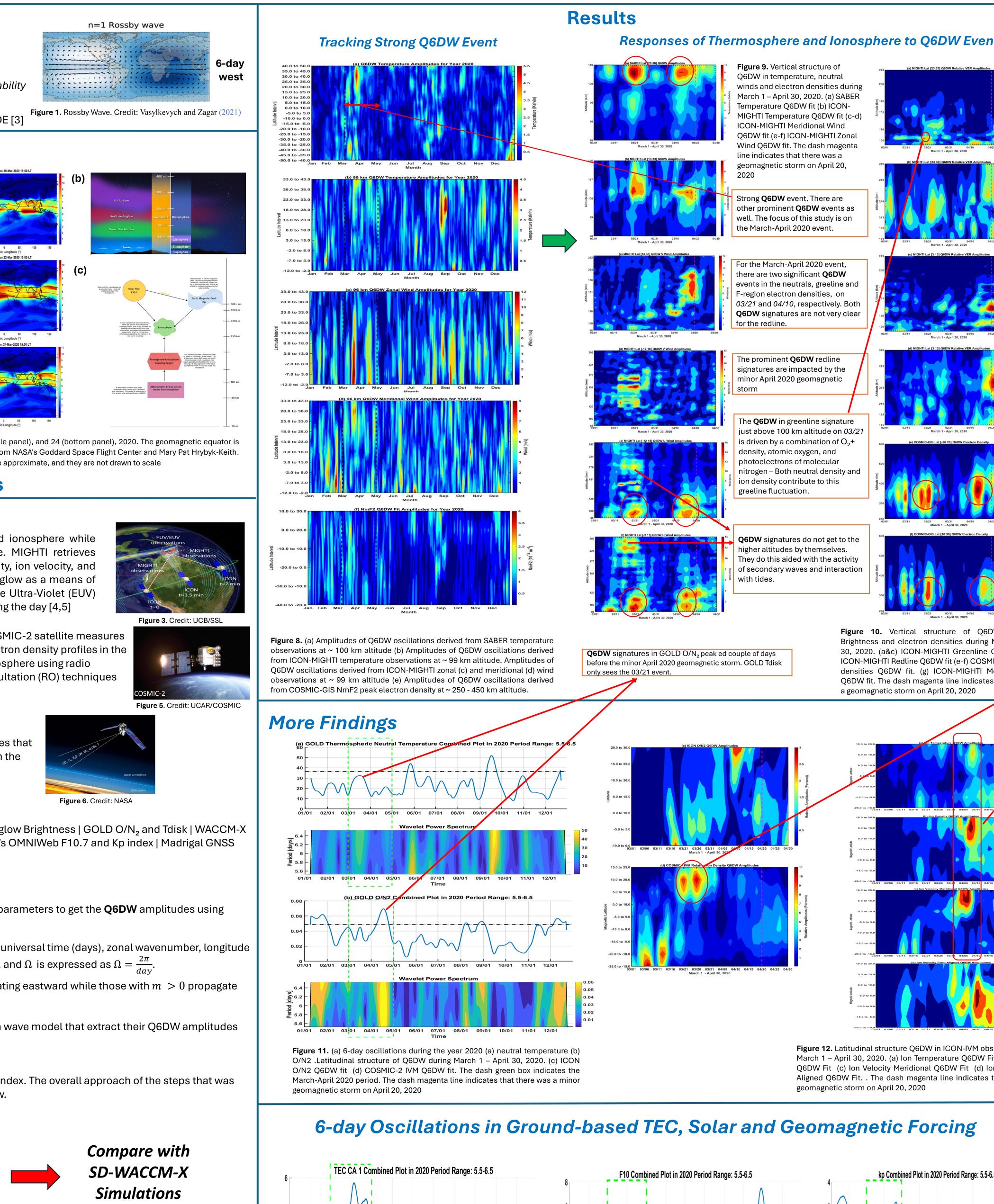
up to ~ 350 km [6,7]

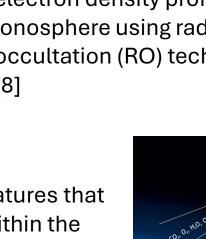
A least square fit wave model was designed to fit SABER temperature and the other parameters to get the **Q6DW** amplitudes using the equation: $Acos(n\Omega t + m\lambda - \phi)$

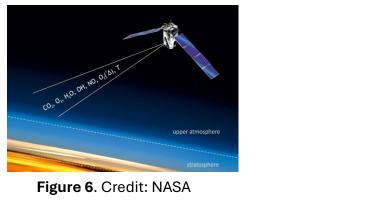
A, n, Ω , t, m, λ and ϕ denotes the amplitude, frequency(/day), Earth's rotation's rate, universal time (days), zonal wavenumber, longitude (radian), and phase, respectively $n \ge 0$, $m = \dots - 4$, -3, -2, -1, 0, +1, +2, +3, +4, \dots and Ω is expressed as $\Omega = \frac{2\pi}{day}$. $n \neq 0$ denotes wave traveling in the zonal direction. m < 0 represent waves propagating eastward while those with m > 0 propagate westward, and waves with m = 0 denotes standing oscillations.

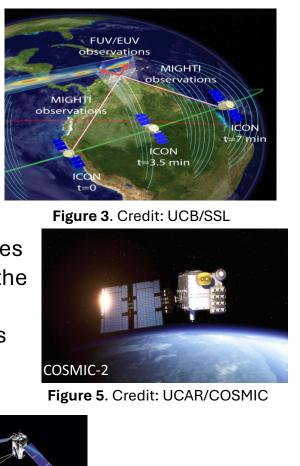

For the ICON-MIGHTI L3 parameters, a convolution approach is adopted to design a wave model that extract their Q6DW amplitudes $\phi(\lambda, i) = \frac{\pi \lambda}{180} + \frac{2\pi i}{d}$ using the equation:

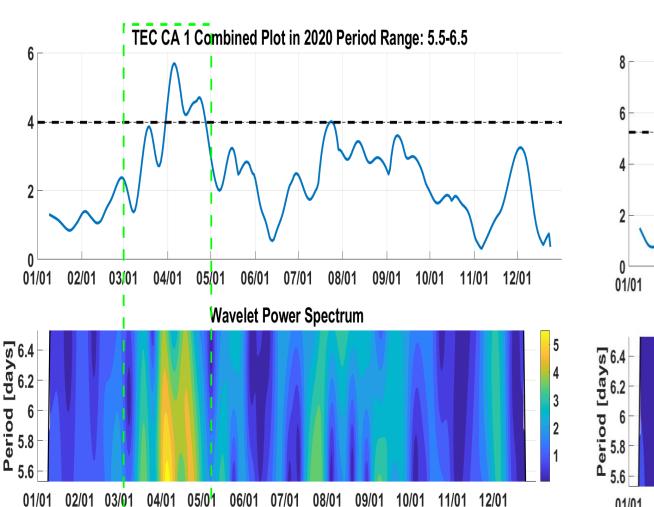

d is the denotes the period of the wave in days and i denotes the integer for the day index. The overall approach of the steps that was implemented to extract Q6DW from all these data sources are as represented below.


STEPS ——	• ICON + SABER Use TIMED/SABER and ICON to find strong quasi 6-day wave number 1 events		Use ICON to look at thermospheric altitudes		GOLD Use GOLD to track 6-day oscillations in O/N_2 and neutral temperature	
		COSMIC-2 G Use FORMOSAT-7 (F7/C2) observati RO GIS to track io response	7/COSMIC-2 ions and	GEOMA ACTIVIT Use 6-day F10.7 & Kr check for coscillation	AR EUV FLUX + MAGNETIC IVITY -day oscillations in 7 & Kp index to 6 for corresponding ations in solar and hetospheric forcing	


Figure 7. An overview of the technique that was used in this study.


References [1] Liu, G., England, S. L., & Janches, D. (2019). Quasi two-, three-, and six-day planetary-scale wave oscillations in the upper atmosphere observed by TIMED/SABERover ~17 years during 2002–2018. Journal of Geophysical Research: Space Physics, 124, 9462–9474. https://doi.org/10.1029/2019JA026918 [2] Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., et al. (2020). 2019 Antarctic sudden stratospheric warming: Quasi -6-day wave burst and ionospheric effects. Geophysical Research Letters, 47, e2019GL086577. https://doi.org/10.1029/2019GL086577 [3] Owolabi, O. P., England, S. L., & Liu, G. (2025). A long-term survey of the role of atmospheric planetary waves in the day-to-day variability of the ionosphere. Journal of Geophysical Research: Space Physics, 130, e2024JA033160. https://doi.org/10.1029/2024JA033160 [4] Immel T. J., S. L. England, S. B. Mende, R. A. Heelis et al.... The Ionospheric Connection Explorer Mission: Mission Goals and Design. Space Science Reviews, 214(1):13, February 2018. doi: 10.1007/s11214-017-0449-2. [5] Immel Thomas J., Scott L. England, Brian J. Harding et al... The Ionospheric Connection Explorer - Prime Mission Review. Space Science Reviews, 219(5):41, August 2023. doi: 10.1007/s11214-023-00975-x. [6] McClintock, W. E., Eastes, R. W., Hoskins, A. C., Siegmund, O. H. W., McPhate, J. B., Krywonos, A., et al. (2020). Global-scale observations of the limb and disk Mission implementation: 1. Instrument design and early flight performance. Journal of GeophysicalResearch: Space Physics, 125,e2020JA027797. https://doi.org/10.1029/2020JA02779 [7] Eastes, R.W., McClintock, W.E., Burns, A.G. et al. The Global-Scale Observations of the Limb and Disk (GOLD) Mission. Space Sci Rev 212, 383–408 (2017). https://doi.org/10.1007/s11214-017-0392-2 [8] Lin, C.-Y., Lin, C. C.-H., Liu, J.-Y., Rajesh, P. K., Matsuo, T., Chou, M.-Y., et al. (2020). The early results and validation of FORMOSAT-7/COSMIC-2space weather products: Global ionospheric specification and Ne-aided Abel electron density profile. Journal of Geophysical Research: Space Physics, 125, e2020JA028028. https://doi.org/10.1029/2020JA028028 [9] Russell, J. M. I. I. I., Mlynczak, M. G., Gordley, L. L., Tansock, J., & Esplin, R. (1999). An overview of the SABER experiment and preliminary calibration results. Proceedings of SPIE - The International Society for Optical





Multi-instrument examination of the response in the thermosphere and ionosphere to a quasi 6-day planetary westward wave event

Oluwafisayo Owolabi¹ (oluwafisayoo@vt.edu), Scott England¹ and the ICON Team ¹Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA

Time

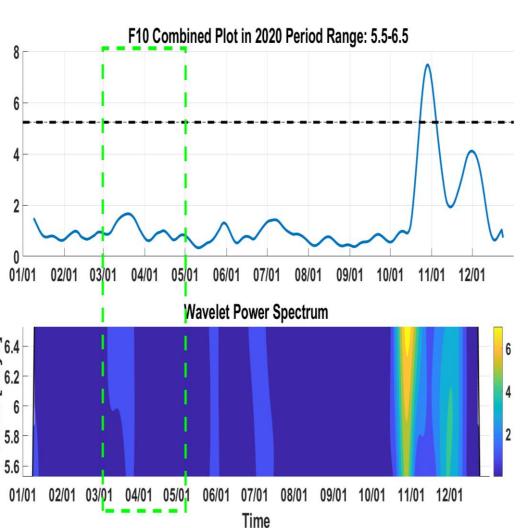
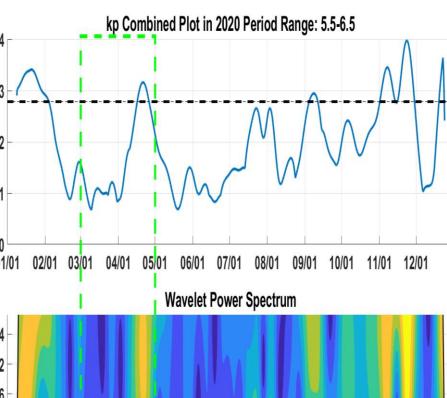



Figure 13. (right) Central America TEC (middle) F10.7 and Kp (left) index 6-day oscillations during the year 2020. The dash green box indicates the March-April 2020 period

Figure 12. Latitudinal structure Q6DW in ICON-IVM observations durin March 1 – April 30, 2020. (a) Ion Temperature Q6DW Fit (b) Ion Density Q6DW Fit (c) Ion Velocity Meridional Q6DW Fit (d) Ion Velocity Field Aligned Q6DW Fit. . The dash magenta line indicates that there was a

10/01 11/01 12/01

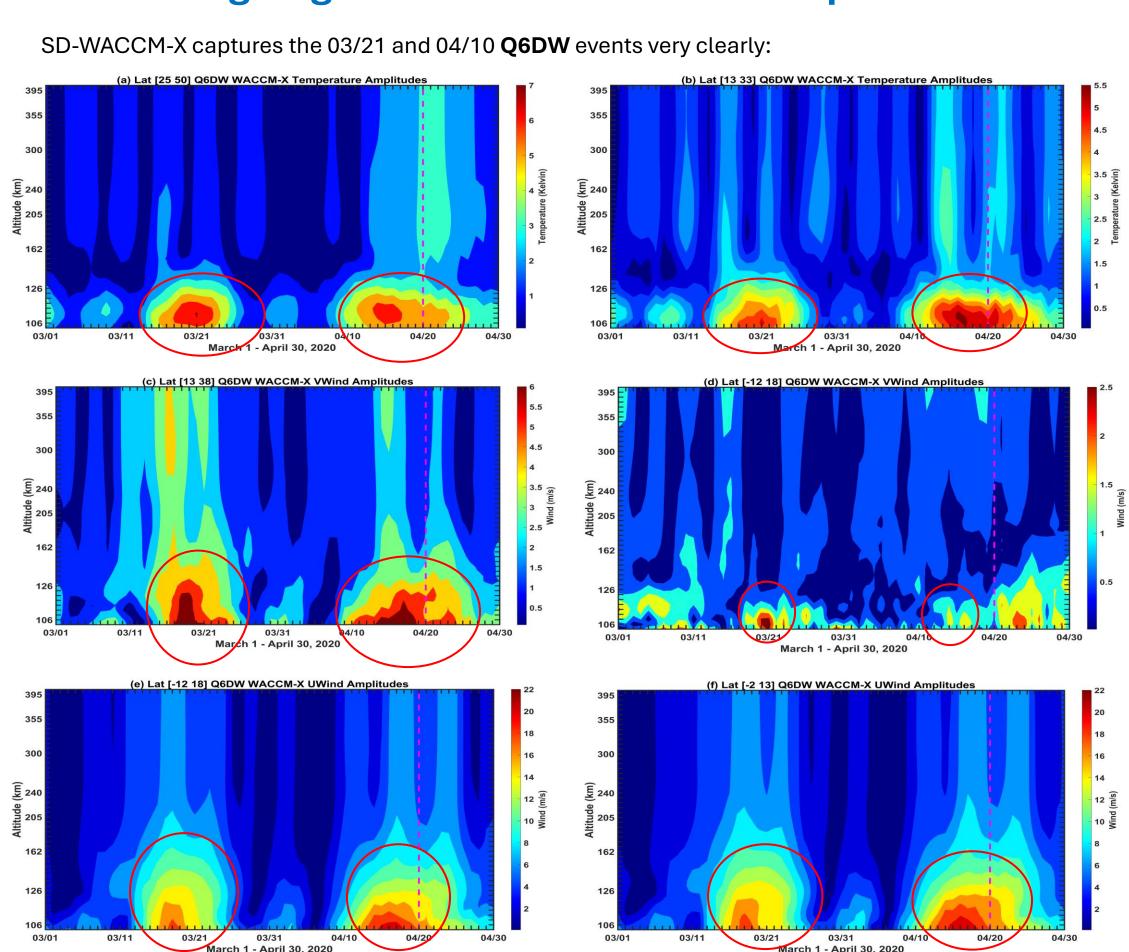


Figure 14. Vertical structure of Q6DW in WACCM-X temperature and neutral winds during March 1 – April 30, 2020. (a) WACCM-X Q6DW fit for SABER Temperature latitude (b) WACCM-X Q6DW fit for ICON-MIGHTI Temperature latitude (c-d) WACCM-X Q6DW fit for ICON-MIGHTI Meridional Wind latitudes (e-f) WACCM-X Q6DW fit for ICON-MIGHTI Zonal Wind latitudes. The dash magenta line indicates that there was a geomagnetic storm on April 20, 2020. The dash magenta line indicates that there was a geomagnetic storm on April 20, 2020

ICON IVM sees **Q6DW** at a later time that COSMIC-IVM sees **Q6DW**. Part of the reason for this could be due to ICON-IVM sampling bias – ICON-IVM's sampling is sensitive to different latitudes and times of a day as day changes such that the signature of the Q6DW event could be related to the time of the day that is revolving with day number.

Coupling Mechanisms/Par

F-region wind modulation Modified dynamo region Modified O/N2 circulation Q6DW showing up in the ion Modified ExB drift 6-day periodic signatures in

6-day periodic signatures in

6-day periodic signatures in

- atmosphere induced an ionospheric response at **F-region ionospheric altitudes**.

- geomagnetic or magnetospheric forcing.
- Q6DW redline brightness and GOLD O/N_2

This research work is supported by NASA Ionospheric CONnection Explorer (ICON) project

01/01 02/01

.

Ongoing Work: SD-WACCM-X Perspectives

thways	Are there evidence of Q6DW signatures during the March-April 2020 event?
	Yes
	Yes
	No
nosphere and upper thermosphere	Yes
	Partially Yes
electron density	Yes
geomagnetic activity	Partially Yes
solar EUV flux	No

Conclusions and Future Work

The response in the thermosphere and ionosphere to Q6DW wave events during March-April 2020 is examined. **Q6DW** is clearly seen at some upper thermospheric and ionospheric altitudes. There is a significant

correspondence between the amplitude of **Q6DW** for the neutrals and those of COSMIC-GIS electron density and 6-day oscillations in ground-based total electron content, indicating that the Q6DW in the lower and middle

• The observed greeline and redline **Q6DW** signatures are not necessarily revealing that the neutral atmosphere is oscillating 100% - some of the oscillations are from the oscillations in the ions as well.

• Evidence of Q6DW is not very clear in GOLD O/N₂. But it can be seen in ICON O/N₂ for the 04/21 Q6DW event

There is a possibility that some of the forcing contributing to the activities of these wave events are due to

Future work is to examine if the SD-WACCM-X model tracked O/N₂ variation.

• Another future work is to do a modeling study that will isolate the effect of the minor geomagnetic storm in the

Acknowledgements