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Phase Retrieval: The longitudinal

progression of an atmospheric tide can be

" iInferred by comparing its relative phase
across the zones.

« | 1, This process is shown to the left for a
simulated 12hm = 2,s = —2 wave.
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A wave moving quickly westward around the globe will show a fast phase
advance across zones, appearing first in the eastern zone, then the center
zone, and then the westward zone. The speed and direction of the wave can
be inferred by the direction and magnitude of phase progression across the
Zones

 Meteor observation data is publicly available upon request

J .

Data: Observations were made by a monostatic specular meteor radar array

located near the McMurdo Research Station, Antarctica (77.8°S, 166.7°E) [4]

« SKIYMET-type radar built by Genesis Software

« 32kW transmitter operating at a frequency of 36.1/MHz

« 1 transmit antenna co-located with a 5-element Jones cross receive array
for interferometric meteor position solutions

Winds in the upper atmosphere are largely dominated by
atmospheric tides. These winds are periodic In time and
space, classified by their temporal and spatial wave
numbers®.

Temporal wave number (m) describes a wave’s repetition
period, indicating how many times that wave repeats over a
fixed location over the course of a day. The temporal
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wavenumber is related to its period in hours via: P = —

Spatial wave number (s) describes how many times the
wave repeats around the circumference of the earth,
Indicating the number of peaks itselt around the globe at any
given time. The sign of s indicates the direction of travel of
the wave, with a positive s indicating an east to west travel.

For a given longitude A [deg] and time t [hr], the tidal winds
can be expressed via®:
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/Winds: Simulated and Observed

Where A and ¢ are the amplitude and phase offset,
respectively, for wave m.

The strongest atmospheric tides are generally semi-
diurnal (im = 2,s = +2) and diurnal (im = 1,s = £1). A tide
whose wavenumbers match In  magnitude and
propagates westward is migratory®’. Confirming the
direction of these tides are of particular interest, as
there is some speculation of tides switching directions
with seasons.

For simulations, a simple wind model calculates the wind
vector at the time and position of each meteor if only
pure atmospheric tides of known wave numbers are
present. Simulated radial winds for each real observation
are then imposed by projecting the simulated winds
along the line-of-sight vector to the meteor. This
artificial dataset gives an idea of the expected phase
progression across the zones while also demonstrating
the viability of this technique in the best case of pure

N/

winds.
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Results

After coherent integration of observations and filtering
of the estimated winds, phase progression of 12- and
24-hour tides across the three east-west zones match
most closely with migrating semi-diurnal () and diurnal ()
tides, respectively. The phase progression of the semi-
diurnal winds showed great agreement with both the
simulated winds and the expected phase progression.
The diurnal wind’s spatial progression was not as clear
In either the real data or simulation, but zonal phase
progression suggests a westerly wind that is the most

similar to a migrating tide References and

Contact

While not shown here, other times
of the year were investigated to try
to understand the waves’ seasonal .,
variability in direction and strength.
It Is clear that the diurnal tide is

strongest in the summer, and £s

future work will be spent Iookmg §°:: ----------
for seasonal trends in direction for o =

G variety of wavenumbers.
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