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Gravity Waves are buoyancy 
waves that propagate in the 
atmosphere [Matsuda et al., 
2014]
• Mostly generated by 

tropospheric weather,
• Can vertically propagate 

above 100 km altitude,
• Affect the temperature 

structure of the atmosphere,
• Drive pole-to-pole circulation.
ANGWIN (Fig. 1 & 2)
• An international 

collaboration, investigates the 
upper atmosphere dynamics 
over a continent-size region, 
uses a network  of all-sky 
imagers.

• Large data sets (~1M images 
per winter) --> bottle neck.

Algorithm used:
• Light Gradient Boosted 

Machine (LightGBM) [Ke et al., 
2017],

• Fast but requires unique 
models for each station.

• Inspire by ML model used to 
sort Themis Aurora all sky 
imager data [Clausen et al., 
2018]: “Clean” (0),“Obscured” 
(1).

Research goals:
• Compare validated Halley 

models’ findings,
• Compare short period 

gravity waves power over 
different Antarctic stations.

Image Processing

Analyzing Atmospheric Gravity Waves Over 
Antarctica and Visualizing Machine Learning Data
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• Machine learning in ASI cleaning removes the bottle 
neck created by the large data set.

• The number of clean windows correctly identified by 
the Halley model comparable to that of Davis and 
McMurdo.

• Machine-identified windows and manually identified 
windows shows similar results.

• More “clean” windows may be found using MLShellPy 
window flagging algorithm as opposed to the original 
MLShellrunner version 1 algorithm.

Window selection method [Fig. 5]

• Windows flagged by MLShellPy
contain less error around the 
edges than MLShellrunner Version 
1, but the centers remain 
comparable.

Average power and window length 
[Fig. 6]

• Average power measured at Davis 
is approximately 4.6x larger than 
Halley’s  and 4.8x larger than 
McMurdo’s,

• Station with the longest windows: 
Halley. Station with the most 
windows: McMurdo.

Phase Velocity Spectrum [Fig. 7]

• Power increases over the course 
of the winter for all the stations 
and directionality is very similar 
for McMurdo and Davis (~SW) 
during most of the winter. It varies 
for Halley from W to E, which was 
unexpected.

ANtarctic Gravity Wave 
Instrument Network (ANGWIN)

Figure 2: ANGWIN imager network map.

Use LightGBM Models to identify 
“clean” windows (Fig. 3)
• 2 hours of “clean” data,
• 3 minutes or less between 

each “clean”  data point.
Compare window identification 
methods
• Manually identified windows vs 

computationally identified,
• Window length, OH power (Fig. 

6).

Compare filtered vs unfiltered 
computationally found windows
• Subtracted phase velocity 

spectrums (Fig. 5). 
Process FFT spectrum analysis to 
study atmospheric gravity waves 
[Matsuda et al., 2014]
• Performed on “clean”, 

processed windows (Fig. 4),
• Generates gravity wave phase 

velocity spectrums.

Subtracted phase 
velocity spectrums

Method

Figure 7: Monthly averaged phase 
velocity spectrums from Halley, 
Davis, and McMurdo generated by 
manually verified  “clean” 
windows found by MLShellruner 
Version 1 for an entire season.

Introduction

Figure 4: Monthly power spectrums processed with the clean 
windows found by MLShellrunner v1 (left) vs found by 
MLShellPy (right). The number and length of windows change 
across identification methods which affect monthly average 
phase velocity spectrums.

Figure 5: Difference between the 
monthly averaged phase velocity 
spectrums generated using manually 
verified “clean” windows  and those 
using all windows found. 

Results

Figure 1: OH IR (0.9-1.7µm) all-
sky airglow imager. 

Conclusion
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Figure 3: “Clean” windows are 
defined as free of excessive cloud, 
aurora, moon, or twilight 
contamination.

Differences between windows

Figure 6 Comparison of average power and length of window 
between the Halley, Davis, and McMurdo stations. Windows 
gathered using MLShellrunner Version 1.
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