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** How does the E-region neutral wind impact ionospheric frictional heating?

Field Intensity (V/m)
Pedersen Conductivity (5/m)

Field Intensity (V/m) Horizontal Velocity (m/s)

Pedersen Conductivity (5/m)

Horizontal Velocity (m/s)

influence of neutral wind 1s readily apparent as the expression of energy deposition fluctuates relative
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Auroral Jets High Flyer

The source for electric fields used in the calculations of frictional heating are

from the DC electric field probes flown during the respective mission and are 1gooF — Flectrie Feld Magnitude T oy Eiiiiiigj_i,?,‘;“ 2000
depicted in figure 1. The vapor trails of TMA were photographed and w00 e
triangulated to obtain neutral velocity profiles utilizing the line-of-sight
projection method providing profiles between 100-140 km which are depicted in
figure 2. To investigate the rate of ionospheric frictional heating in the E-region, 100
we may consider two regimes. The Joule heating rate 1s derived from Ohm's law

and includes contributions from the conductivity, electric field, and neutral wind. -

The second regime is found by setting the neutral component to zero and is TogE e rierd Megnitude ekl i
known as the passive energy deposition rate which only depends on the o0 "B

northward conductivity and electric field.

¢i = op(E, + U, x B)

Evans et al., 1977 found evidence of enhanced currents relative to the proximity of an auroral arc and
a minimum of frictional heating within the arc itself. When geomagnetic activity 1s high or there 1s
proximity to an auroral arc, neutral winds act as a regulatory mechanism, diminishing the energy
deposited by frictional heating. In contrast, during low geomagnetic activity or further from an arc,
these winds enhance frictional heating.

Auroral Jets Low Flyer
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- The peak altitude of energy deposition via frictional heating 1s sensitive to the level of geomagnetic
activity. When the influence of neutral wind begins to inhibit energy deposition, the peak altitude of
the Joule heating rate decreases with respect to altitude.
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The results depicted in Sangalli et al., 2009 support a peak altitude of 116 km which agree with the
3 regions of enhanced frictional heating in this investigation. The 28% overestimation of frictional
heating 1s also consistent when energy deposition was enhanced.
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