
Background
• Local auroral coupling of the ionosphere and magnetosphere (MI) is the 

subject of an ongoing sequence of system science studies (Wolf, 1975; 
Cowley, 2000; Khazanov et al., 2018; Lynch et al., 2022).

• MI coupling studies demand self-consistent, topside maps of field-aligned 
current (FAC) and 𝐄𝐄 × 𝐁𝐁 plasma flow that agree with ionospheric conductivity 
patterns created by charged particle, auroral precipitation.

• Discrete auroral precipitation provided by the auroral acceleration region 
creates arc-scale morphology in the ionospheric conductivity volume to 
which the MI coupling is highly sensitive.

• Quasi-static ionospheric plasma flow, FAC, and conductivity have a 2D 
topside relation given by Eq. 6.12 in Kelley (2009):

𝑗𝑗∥ 𝑥𝑥,𝑦𝑦 = Σ𝑃𝑃∇ ⋅ 𝐄𝐄 + 𝐄𝐄 ⋅ ∇Σ𝑃𝑃 + 𝐄𝐄 × 𝐛𝐛 ⋅ ∇Σ𝐻𝐻 1

where 𝑗𝑗∥ is a horizontal map of FAC at the topside ionosphere, Σ𝑃𝑃 and Σ𝐻𝐻 
being the height-integrated Pedersen and Hall conductivities, and 𝐄𝐄 is the 
perpendicular ionospheric electric field.

• For sheet-like arcs (arcs that are latitudinally narrow, longitudinally aligned, 
with no along-arc gradients) finding self-consistent solutions to this is 
relatively well-posed (Marghitu, 2012).

• This 2D picture can hide the 3D nature of auroral current closure.
• Due to limitations of auroral system experiments in 3D, or even 2D, 3D data 

driven auroral simulations are rare.

Problem Statement
• How can we find physical, self-consistent solutions to the ionospheric 

current continuity equation using 3D modelling for less idealized discrete 
auroral arc systems?

• How can 3D simulations be properly driven using 2D electrostatic, 
continuous topside boundary conditions from distributed data provided 
by all-sky, multi-spectral imagery and in situ data from spacecraft?

• What can we learn from 3D, electrostatic, auroral ionospheric simulations?

Discussions & Conclusions
• Deriving FAC using all-sky imagery inverted conductance maps is insufficient 

when determining both magnitude and morphology of auroral currents.

• Even for the most basic auroral systems, a 2D description hides the 3D 
nature of current closure.

• Two plasma flow data tracks crossing seemingly sheet-like auroral arcs can 
unveil significant along-arc structure.

• Current flux tubes close to inflection lines of up-down FAC sheet pairs can 
close through Pedersen current at altitudes well above where Pedersen 
conductivity maximizes.

• Current flux tubes surrounding auroral arcs can split; a region of FAC inside 
one downward current sheet can close in two upward current sheets.

• Strong along-arc electric fields extend FAC Pedersen closure along this same 
direction resulting in closure at lower altitudes altogether.
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3D Simulation Results
• The center column presents five simulations:

i. Feb. 10, 2023: Conjunction with Swarm A only.
ii. Feb. 10, 2023: Conjunction with Swarm C only.
iii. Feb. 10, 2023: Conjunction with Swarm A and C.
iv. Mar. 14, 2023: Conjunction with Swarm B.
v. Mar. 19, 2023: Conjunction with Swarm A and C.

• The left of rows i, iv, and v show their respective precipitation drivers along 
with the arc boundaries superimposed on the Pedersen conductance.

• The left of row ii shows the FAC terms from Eq. (1) for simulation iii 
derived from the input electric field and the imagery inverted conductances.

• The left of row iii shows the same as the left of row ii but with GEMINI 
calculated conductances used instead.

• The center and right of all rows show the isometric, side, and top views of 
the 3D simulation result.

• To visualize 3D current closure, we use current flux tubes made possible 
by the condition of static current continuity, ∇⋅𝐣𝐣=0, enforced by GEMINI.

• The bottom and east wall of the model space plot the topside FAC and the 
central electron density cuts, respectively.

• The magenta arrows shows the Swarm ion flow data projected to 80 km.
• The aquamarine arrows provide a sparse array of electric field vectors.
• For more information of the all-sky imagery inversions, see Poster MITC-9 

by A. Mule.
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Unionization
The work presented here does not exist without the graduate student 
population at Dartmouth College. The graduate workers of Dartmouth, under 
GOLD-UE, are currently on strike fighting for protections for our community. We 
fight for the college to remove systematic barriers preventing people from 
pursuing graduate school, as well as hindering the work done by current 
graduate students. We have fought for retaliation policy, dental care, childcare, 
short term disability, a living wage, and more. I am happy to discuss the 
graduate student union further!

Geographical Context

Figure 1: Geographical context for the 
Feb. 10, 2023 event. Left: The GEMINI 
model space in reference to Alaska and 
Swarm spacecraft. Dashed red lines are 
ground projected trajectories. Above: The 
total precipitating electron energy flux in 
reference to the TII plasma flow data.

Plasma Flow Data Replication Technique
• We present auroral arc case studies using ion flow data from ESA’s Swarm 

spacecraft’s TII (Knudsen et al., 2017) in conjunction with multi-spectral, all-
sky imagery from the UAF GI's Poker Flat DASC (Conde et al., 2001).

• These data are molded into topside plasma flow maps used to drive 3D 
auroral simulations provided by GEMINI.

• To create spatially continuous 2D flow driver maps we use the replication 
method based on Clayton et al. (2019, 2021), and outlined by van Irsel et al. 
(in prep., see github.com/317Lab/aurora_gemini), summarized below:

1. The flow data are translated in the east-north plane following the primary 
arc boundary (A) such that the original (B) and replicated (C) flow data are 
equal at the primary boundary-trajectory intersections (D).

2. The data then are along-track scaled such that the original and replicated 
flow data are equal at the secondary boundary-track intersections (E).

3. The flow data of the replicated track is rotated by a constant angle per data 
track such that it remains to be tangent to the primary arc boundary.

4. This replication is repeated for multiple translations along the arc until the 
top-boundary is filled with a sufficient replication rate.
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The GEMINI Model
• We use multi-fluid model runs provided by GEMINI (Zettergren & Semeter, 

2012; Zettergren & Snively, 2019). For details see github.com/gemini3d.
• This model is state-of-the-art and can simulate the ionosphere at auroral arc 

scales (see Figure 1 for context).
• GEMINI solves for static current continuity to account for changes in model 

parameters impacting conductivities as it steps forward in time.
• It is driven with top-boundary precipitation maps of energy flux and 

characteristic energy covering impact ionization (Fang et al., 2008).
• Additionally, the model is forced at the top-boundary with either a map of 

FAC or plasma flow. The simulations done in this work are all flow driven.

Plasma Flow Replication Example
• Below is an example replication done using Swarm and PFISR data 

(data.amisr.com/database):
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Hiring?
I am graduating in the coming year and I am starting to look for future career 
opportunities. If you, or someone you know, is hiring please let me know! For 
my online resume please visit www.julesvanirsel.com.


	Slide Number 1

