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• Thousands of meteors entering Earth’s atmosphere per hour are 

observed by high-power large-aperture (HPLA) radar facilities

• Meteoroids deposit metallic neutrals and ions into the atmosphere

• Meteor plasma becomes distinct component of ionosphere

• Meteoroid impacts pose mechanical and electrical hazards to spacecraft
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• Enormous and rich data sets of meteors observed via radar contain 

information about the meteoroids and the lower thermosphere

• Simulation tells us the shape of the electron density distribution 

surrounding a meteoroid, which is responsible for head echo observations

• We seek to quantify, using particle-in-cell (PIC) plasma simulation, 

how head echo signal strength (𝝈𝑹𝑪𝑺), as seen in radar data, relates to 

meteoroid ablation rate ( ሶ𝒎). Can integrate ሶ𝑚 to get meteoroid mass (𝑚)
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Comparison with Analytical Theory

Hypersonic neutral atmosphere 

considered an unperturbed 

fluid (far denser than plasma)
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Meteoroid modelled as an isotropic 

source of warm neutrals (𝑇 = 2500 𝐾)
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• Plasma density derived analytically by Dimant et al. (2017)

• Assumes particles only undergo one scattering collision

• Neglects electric and magnetic fields

• We assess the accuracy of the analytical theory by comparing it 

with our simulation results…

• Effects of electric and magnetic fields in the head echo region of a 

meteor decrease as ablation rate ( ሶ𝑚) increases

• Accuracy of analytical model increases as ablation rate increases, 

so long as collisions between meteoric particles remain negligible

• This result lends credence to the analytical plasma density 

derived by Dimant et al. (2017) when used to interpret HPLA 

radar observations of meteors

• Future work will extend domain size to include meteor trail 

formation, and utilize results to inform radar trail echoes

𝑃𝑐𝑜𝑙 = 1 − exp(−𝑈𝑟𝑒𝑙𝜎𝑀𝐴𝑛𝐴 Δ𝑡)

On a given timestep, the probability 

that a meteoric particle collides with an 

atmospheric particle determined via 

Monte Carlo collisions (MCC) method:

𝑈𝑟𝑒𝑙 = Meteor velocity, 𝜎𝑀𝐴 = coll. cross-section,

𝑛𝐴 = atm. number density, Δ𝑡 = timestep length where 𝑈𝑟𝑒𝑙 is in km/s

𝑃𝑖𝑜𝑛 = 0.933 𝑈𝑟𝑒𝑙 − 8.86 2𝑈𝑟𝑒𝑙
−1.94,

If a collision occurs, the probability 

that the meteoric particle ionizes is 

evaluated and assessed, as given by 

Vondrak et al. (2008):

If ionization occurs, the 

neutral particle is 

deleted, and an ion and 

electron are generated. 
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(Sugar et al., 2021)

Up to 70% density 

variation very 

close to meteoroid

As ሶ𝑚 increased, 

largest variation 

occurs farther away

With high ሶ𝑚, variation 

is largest in low-density 

region in front of meteor

With low ሶ𝑚, larger 

charge imbalance occurs 

behind meteoroid

Apparent charge imbalance in 

front of meteoroid results from 

insignificant particle density

Positive electrostatic potential develops due 

to ambipolar field in the near-meteoroid 

region and increases with larger ሶ𝑚.

With the addition of Earth’s 

magnetic field, the positive potential 

near the meteoroid intensifies

With larger ሶ𝑚, magnetic field drastically 

alters the potential field, and causes a 

region of negative potential to appear
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Analytical model contains smaller 

bulge upstream, then becomes 

more spread-out downstream

Simulated plasma contains 

smoother transition from 

upstream to downstream

Simulation includes 

minor asymmetry 

due to magnetic field

Difference downstream of meteor decreases 

as ሶ𝑚 increases, although still up to 100% in 

some regions due to magnetic field

Difference upstream of meteor 

large due to DO model neglecting 

background ionosphere

Preliminary trail formation simulations using 𝟏𝟎𝟐𝟒 × 𝟏𝟎𝟐𝟒 × 𝟐𝟎𝟒𝟖 grid:
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As ሶ𝑚 increases, charge 

imbalance in near-meteor 

region decreases!
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