

Formation of SED and EPB during April 2023 Storm Using GITM-SAMI3

Yulu Peng¹, Shasha Zou¹, Zihan Wang², Xiantong Wang¹, Joe Huba³, Aaron Ridley¹

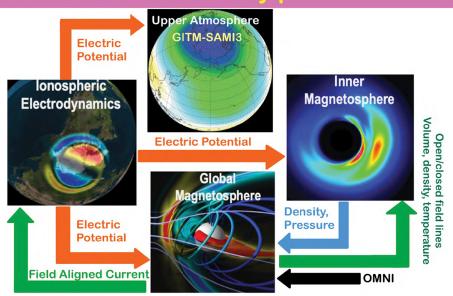
1. University of Michigan, Ann Arbor 2. University of Texas at Arlington

3. Syntek Technologies, Fairfax, VA, USA

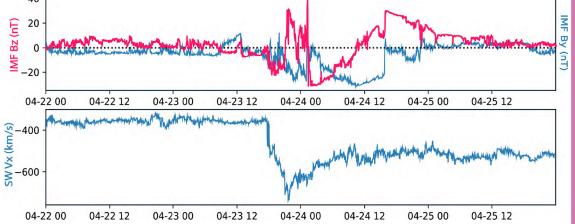
(b) BATSRUS COMPASS

Contact: yulupeng@umich.edu

1. Introduction


- During geomagnetic storms, ionospheric storms consist of largescale variations of ionospheric electron density.
- Ionospheric responses are complex because it has EM-coupling with the SW-magnetosphere and collisional-coupling with the thermophere.
- SEDs are electron density enhancements (positive phase) that often occur in the mid-latitude region from postnoon to dusk sector during storm times. Occasionally, SEDs extend northwestward to higher latitudes and form a SED plume.
- EPBs (Equatorial Plasma Bubbles) are large-scale plasma depletions, rising into the topside ionosphere during post-sunset sector, which are associated with PRE (pre-revsersal enhancement) and initiated by generalized Rayleigh-Taylor instability.
- Density variations of these ionospheric phenomenon are crutial for radio communication.

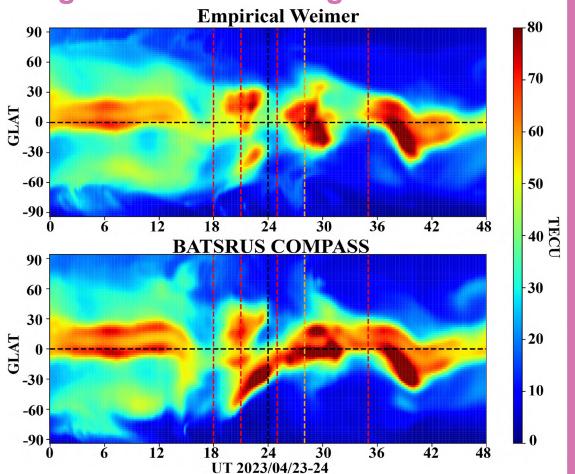
2. Methodology


Two runs using the one-way coupled GITM-SAMI3 from 2023/04/22 to 2023/04/25:

Use the Weimer model as high latitude electric potential.
 Use IE output from BASTRUS MHD model with a new ionospheric conductance COMPASS model.

NOT include initial density perturbations!!!

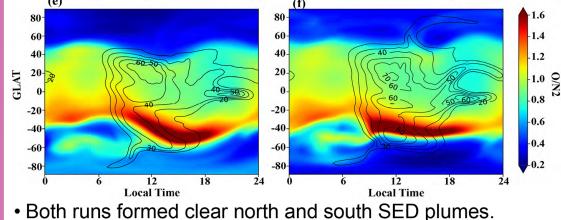
Fig 1. Solar Wind Conditions



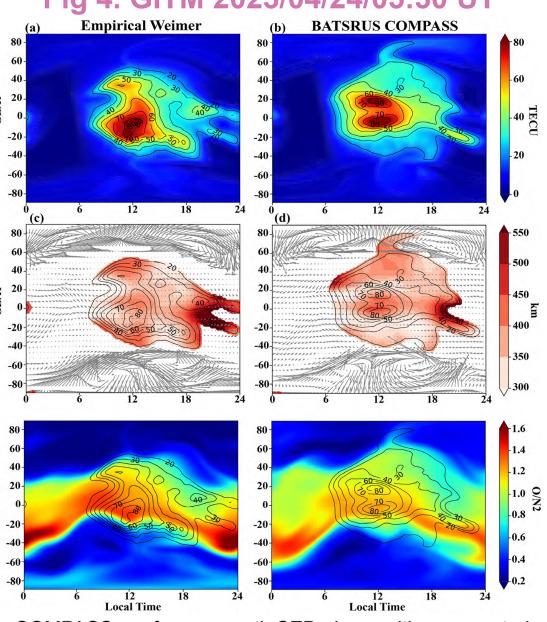
- 1st southward Bz turning: 04/23/18-21 UT due to a full-halo CME hit Earth at 04/23/17:37 UT
- 2nd southward Bz turning: 04/24 01-11 UT due to the continued effect of CME with magnetic cloud.
- Minimum Sym-H reached -233 nT at 04/24 04:03 UT.

3. Results

3.1 **SED**

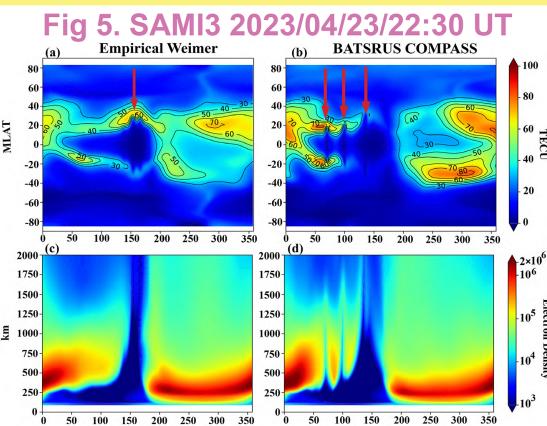

Fig 2. GITM TEC Keograms at Noon

- South SED enhancement at ~08 UT on 04/23 for both runs.
 During 19-24 UT 04/23, both runs have significantly greater SED base and EIA at south mid-latitude region.
- Negative phase at the high latitude after the storm initiation.


Fig 3. GITM 2023/04/23/20:45 UT

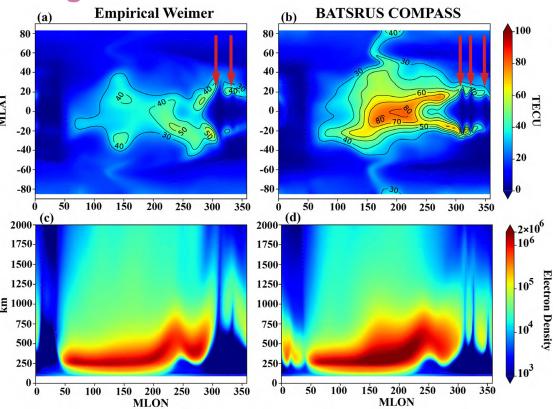
Empirical Weimer

- COMPASS run formed a south (-50 GLAT) SED base at ~480 km separated from EIA height with strong poleward ion flows
- O/N2 hemispheric asymmetry might be due to seasonal effect reinforced by storm effects.


Fig 4. GITM 2023/04/24/05:30 UT

- COMPASS run forms a north SED plume with a separated SED base at 40-60 GLAT with ~420 km.
- Weimer run has smaller TECU and shows a weaker and more asymmetric EIA structure or SED.

3.2 EPBs


MLON

MLON

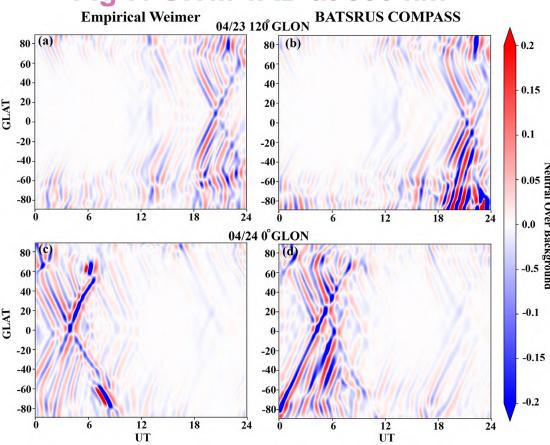

- Both Weimer and COMPASS runs form EPB depletions.
- Weimer run: 2 strips at 160 MLon (pre-dawn).
- COMPASS run: 3 strips at ~70, 100, 130 MLon (~22-03 LT).
- Electron density altitude profiles at the magnetic equator (fig 5e and 5f) show apparent irregularities on the bottomside of the ionosphere, which develop into EPBs.

Fig 6. SAMI3 2023/04/24/07:30 UT

- SAMI3-COMPASS run developes aprrent SED plumes at both hemispheres.
- Both Weimer and COMPASS runs form EPB depletions.
- Weimer run: 2 strips at 310, 330 MLon (~20 MLT).
- COMPASS run: 3 strips at 310, 320, 350 MLon.
- Electron density altitude profiles at the magnetic equator (fig 6e and 6f) show PRE and bottomside ionospheric irregularities.

Fig 7. GITM TAD at 500 km

- Fig 7a-b and 7c-d show strong GITM TADs correspond to two EPB periods at pre-dawn 04/23 and ~22-03 LT 04/24.
- On 04/23, TADs start at 18 UT after 1st Bz southward turning, and take ~3 hr to reach the equator.
- In both cases, TADs reach the equator in ~2-3 hours.

4. Conclusions

- 1. GITM-SAMI3 model successfully captures large-scale ionospheric phenomenon such as SED and SED plumes, and their hemispheric asymmetries.
- 2. Two episodes of SEDs formed during two southward IMF periods
- 3. GITM-SAMI3 using BATSRUS COMPASS produces stronger SEDs than empirical Weimer. Data and model comparison shows better agreement (not shown).
- 4. Two periods of EPBs formed during this storm in both Weimer and COMPASS runs (04/23/21:00--04/24/01:30 and 04/24/05:00--04/24/10:30).
- 5. EPBs formed without the initial density seeding. We suggest that large TADs formed in GITM may create initial density variations in SAMI3 to seed EPBs.

5. Acknowledge

NASA grants: 80NSSC20K0190 and 80NSSC20K1313

