BOSTON UNIVERSITY

Motivation

- Geomagnetic storms drive intense electric fields through the highlatitude E-region of the ionosphere.
- These fields drive the Farley-Buneman (FB) and the gradient drift (GD) plasma instabilities.
- These instabilities modify the conductivities and temperatures of the auroral electrojet.

Scientific Questions

- (1) What are the kinetic effects of intense electric fields on the background ions in the E-region ionosphere?
- (2) How does a spatially-varying ion-neutral collision rate affect the development of the Farley-Buneman (FB) instability?

Method: EPPIC

• We performed 3D plasma simulations using EPPIC the electrostatic parallel particle-in-cell simulator.

How do PIC codes work?

Kinetic BGK Collisional Model

• The Boltzmann equation with the BGK collision term is given by:

$$\frac{\partial f}{\partial t} + \frac{e}{m_i} \vec{E} \cdot \frac{\partial f}{\partial \vec{V}} + \vec{V} \cdot \frac{\partial f}{\partial \vec{r}} = -\nu_i (f - \frac{n_i(\vec{r},t)}{n_0} f_0^C)$$

ere $f_0^{Coll}(V) \equiv n_0 \left(\frac{m_i}{m_i}\right)^{3/2} \exp\left(-\frac{m_i V^2}{n_0}\right)$.

 $2T_n$ $\sqrt{2\pi T_n}$ • We compare the solutions of the above equation (dotted lines) with the resulting ion velocity distribution functions from the simulations (solid lines).

(1) Kinetic Effects of Intense E-Fields on Plasmas and (2) Large-scale Simulations of the Farley-Buneman Plasma Instability in the Auroral Electrojet

Rattanakorn (Save) Koontaweepunya, Meers Oppenheim, Yakov Dimant

Boston University, Astronomy Department

Effects of Intense E-Fields on Background Ions

In the direction parallel to E₀:

In the directions perpendicular to E₀:

The distribution in the z direction looks the same and is thus not shown.

— Simulation, $E_0 = 0.235136$ V/m >— Simulation, $E_0 = 0.940543 \text{ V/m}$ ----- Theory, $E_0 = 0.235136$ V/m ----- Theory, $E_0 = 0.940543$ V/m

Directional Heating Comparisons

HE: High E (*E*⁰ = 0.235136 V/m), VHE: Very High E (*E*⁰ = 0.940543 V/m)

	$v_{th,x}$ (m/s)	v _{th,y} (m/s)	v _{th,z} (m/s)	$\sum v_{th}^2$ (J/kg)
HE Sim	444	606	444	761508
HE Theory	287	753	287	731747
VHE Sim	1384	2157	1384	8483561
VHE Theory	287	2760	287	7782338

Spatially-varying Collision Rate

periodic simulations.

Conclusions

- model generally agree.
- develop non-uniformly.

Collision rate decreases exponentially along x in these

(1) As predicted by the kinetic BGK collisional model, intense Efields do distort the shapes of the ion distribution functions. • The model overestimates the heating in the Pedersen direction (y) while underestimating the heating in the

directions perpendicular to E_0 (x and z).

• The total thermal energies between the simulation and the

(2) A spatially-varying collision rate causes the FB instability to