A synthetic study on Kalman smoother coupling to a data assimilation algorithm

Jiahui Hu¹, Sarah E. McDonald², Alex Chartier³, Seebany Datta-Barua¹ ¹Illinois Institute of Technology, ²Naval Research Laboratory, ³Johns Hopkins University Applied Physics Laboratory

- EMPIRE (Estimating Model Parameters from Ionospheric Reverse Engineering) is a data assimilation method that estimates ion drifts and neutral winds based on plasma density rate observations
- Recent estimation error analysis^[1] shows **Large** uncertainties for ion drift driver estimation at high latitudes observed for the data assimilation algorithm of EMPIRE

Objective

- Develop an algorithm setup for reducing the high-latitude error
- Adopt the Kalman smoother^[2] to refine the state calculations

Background – EMPIRE [3,4]

 δa_1 :ExB transport correction δa_{II} : Neutral wind transport correction

Fig. 3 EMPIRE primary setup

Fig. 2 EMPIRE global grid map with ion transports Image credit: A. L. Rubio

F₁₁: Neutral wind mapping matrix

transports due to ExB effects)

New method – Couple the Kalman smoother

- Improves the error statistics to the algorithm for historical event analysis
- Refines the state estimation within a time frame

Experimental setup

- Conduct a synthetic study on August 25th 26th 2018
- Treat SAMI3 data as the synthetic truth
- SAMI3 is self-consistently driven by Weimer, MSIS and HWM14
- Compare EMPIRE filtered and smoothed estimates of ion drift to the EMPIRE configuration of filter only as a function of longitude and time

Conclusion & Future work

- Compared EMPIRE configurations w/ and w/o smoother
- The Kalman smoother has the potential to reduce errors and sigma for EMPIRE state estimations at high latitudes, based on a simulated quiet and storm period analysis
- Future work: Implement the coupled Kalman smoother and filter for actual storm observation data

Acknowledgement

Funded by NASA 80NSSC19K0086, AFOSR FA9550-23-1-0169, IIT space weather lab

Results

- The Kalman smoother **reduces** zonally averaged errors and residual sigma in both perpendicular zonal and meridional

Fig. 6 The (a) zonally averaged errors vs. time (b) time averaged ion drift relative errors on a log base-10 scale vs. geomagnetic latitude

Geomagnetic latitude [deg]

References

[1] Hu, J., López Rubio, A., Chartier, A., McDonald, S., & Datta-Barua, S. (2024). Quantification of representation error in the neutral winds and ion drifts using data assimilation. Space Weather, 22, e2023SW003609. https://doi.org/10.1029/2023SW003609

[2] Kalman, Rudolph Emil"A new approach to linear filtering and prediction problems."(1960):35-45. [3] Miladinovich, D. S., Datta-Barua, S., López Rubio, A., Zhang, S. R., & Bust, G. S. (2020). Assimilation of GNSS Measurements for Estimation of High-Latitude Convection Processes. Space Weather, 18(8), e2019SW002409.

[4] López Rubio, A., & Datta-Barua, S. (2022). Vector Spherical Harmonics for Data-Assimilative Neutral Wind Estimation. Space Weather, 20(8), e2022SW003052.

[5] R. G. Brown and P. Y. Hwang, "Introduction to random signals and applied kalman filtering: with matlab exercises and solutions," Introduction to random signals and applied Kalman filtering: with MATLAB exercises and solutions, 1997