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Abstract APEP 1 : Oct 14, 2023 Annular Eclipse Launh timing was besed onsolr occutation. | APEP 2 2 Apr 08, 2024 Total Eclipse
ote the delay in the F region response.

Atmospheric Perturbations around Eclipse Path (APEP) is a sounding rocket campaign to study the Launch Conditions op—————eR SRt Launch Conditions B oy s “Inh
electrodynamics of Earth’s ionosphere during the October 2023 annular eclipse and the April 2024 total @ 356 - PRE-PEAK 387 - PEAK , 388 - POST-PEAK . | @ 392-PRE-PEAK » 393 - PEAK - @ 394- POST-PEAK o | ’
eclipse in the United States. The launch salvo during each eclipse consists of three launches: one prior to the | il 5l - oo = "
peak local eclipse, one during the peak local eclipse, and one after the peak local eclipse. Each rocket iIs N = 0 == K :
equipped with a suite of instruments to conduct in-situ measurements of the plasma/neutral environment and © ;: B .
fully characterizes its associated electrodynamics and neutral dynamics. For neutral dynamics, the main | | s
payload carried two ionization gauges for measurements throughout the flight and a sensitive accelerometer Gl e e B
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for drag-based measurements up to 110km. Additionally, four ejectable subpayloads carried accelerometers
for distributed drag-based neutral density measurement. This work presents preliminary results showing in-
situ observations of neutral winds and neutral dynamics throughout both the eclipses using low-cost
lonization gauges and accelerometers. P
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Figure 3: APEP1 main payload horizontal trajectory Figure 4: APEP2 main payload horizontal trajectory ' ' ' '
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i 11 Horivontal neutral wi dWi”dVE"DC“Y {m’i)f - rocket plotted with the horizontal _“‘gnd“zﬂi“ﬁw&/lm Figure 13 shows the relative density changes with respect to the first rocket flight before each
igure 11: Horizontal neutral wind measurements from each rocket, plotted wi e horizontal wind mode : : : : : .
) P eclipse, compared with the changes in the acceleration due to drag. In each campaign, relative
Instruments Figure 11 shows the derived neutral wind estimates for both campaigns, compared with the HWM14 [1], decreases in density are observed at similar altitudes in both measurements. However, the decreases
and for the annular eclipse, a supporting SIMONe Specular Meteor Radar. The wind vector is derived by during the total eclipse mission were larger, possibly due to a larger time difference between launches
Pirani/Cold Cathode lonization Gauge [6] calculating the residual pressure difference from the average observed by the gauge as it rotates with the and effects of typical diurnal tides at that local time.
Pteiffer PKR360 x 2 Wil rocket. Assuming vertical wind is zero, the remaining signal is due to horizontal wind and the projection of
Mounted 45° from axial aft end on the main payload ,, the rocket velocity on the spin plane. The orientation of the gauge at peak signal is opposite the direction of
Measurement range: 7.5e-10 to 750 torr -G é’ net wind, and magnitude can be estimated by numerically solving Equation (2) for v. While this process is Takeaways and Future Work
SkHz measurement frequency o still being evaluated and improved, we have high confidence because in the mutually operating range, the _ — _
5% Repeatability o 2 »y,;"",,w ionization gauge winds track with the radar derived winds, showing the decrease in the meridional wind * The flight performance of low-cost accelerometers and Ionization gauges to measure neutral density
Calibrated at Clemson University o < shear altitude around 100km. Additionally, the winds in the 100-120km range are associated with Sq has been demonstrated and show agreement with relative density change flight to flight within their
o _ : _ :
g X currents observed by the magnetometer instrument (below), and the steep gradient at 160km in the WSMR mut_ual!y operating range. _ _

ADXL 355 [7] § : meridional wind is associated with p|asma irregu]aritieg (See poster |T|\/|A_2) * lonization gauge measurements have been used to derive neutral winds between 75-200km and
1x Centrally located on main payload, g APEP WSMR Winds and Current Densities observe similar features to the meteor radar, showing the altitude changes in the shear at 100km.
4x on subpayloads 150 20nal Current Density 130 Zonal Wind Meridional Current Density ~__~ Meridional Wind However, further analysis with Direct Simulation Monte-Carlo (DSMC) free molecular flow

s 5 , T ' T . - - - , T - - - - - - - -

+2¢ measurement range e _ 0 simulations is required to assess and include an error-bar in wind magnitude.

~30 pg resolution PKR360 lonization 120 120 120 £ 120 | —23?  Additional analysis of drag data will be performed in order to estimate winds below 110km, providing

0.25 - 2.5 kHz measurement frequency Gauge Sensor 110 | 110 | 110 | g 10| | ___2g8 corroborating measurements to the ionization gauge derived winds.
Since the ionization gauge on the rocket is moving through 1001 1001 1007 < 100 |
the atmosphere at a high velocity, the measured density will 0 , 0 5 -~ %0 : , %0 5 -~
be enhanced over the true value by a “ram factor”. ASSUITliﬂg Nmeas = RF Nactual (1) Current Density (WJA/m?) Wind Velocity (m/s) Current Density (WA/m?) Wind Velocity (m/s)
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