Comparative Hypothesis Testing of Auroral L-Band Scintillation Layer Gytis Blinstrubas¹ (gblinstrubas@hawk.iit.edu), Alex English¹, ILLINOIS INSTITUTE David Stuart¹, Don Hampton², Leslie Lamarche³, Yukitoshi Nishimura⁴, Seebany Datta-Barua¹ OF TECHNOLOGY ¹Illinois Institute of Technology, Chicago, IL, USA, ²University of Alaska Fairbanks, Fairbanks, AK, USA,

Introduction

Motivation: Scattering layers of GNSS (Global Navigation Satellite System) are normally hypothesized using case studies **Objective:** Determine the layer where scintillation will likely occur using a survey of scintillation events

Background

- Scintillation Auroral GPS Array (SAGA) is used to detect when scintillation occurs (Sreenivash et al., 2020)
- ~ 5,000 scintillation events analyzed in this study
- Sreenivash et al. 2020 hypothesize where peak electron densities occur is where the scattering layer is likeliest to be
- Ratios of auroral light emission can also be used to predict the scattering layer
- Multi-instrument study used to hypothesis layers

- Flat Research Range
- Radar (PFISR) measures electron densities
- All-sky Cameras (ASC) particle precipitation

Fig 2.) Location of instruments at Poker Flat Image Modified from Google Earth PFISR

- Southward facing, anti-parallel to local magnetic field line (205.7° az, 77.5° el) beam used
- Two types of electron density data used
- Long Pulse (LP) (above 195 km)
- Alternating Code (AC) (below 195 km)
- ASC 2-D image from white light camera
- Two physical filters
- 428 nm (blue) filter (excitation of N_2^+ E Region)⁷
- 630 nm (red) filter (O(1D) F Region)⁷

$$M_{\lambda,ij}(t) = (S_{\lambda,ij}(t) - \beta_{\lambda})(\frac{\kappa_{\lambda}}{\tau_{\lambda}})$$

-The corrected photon flux M (Rayleighs) at wavelength λ , (i,j) are the pixel indices -S is the raw sensor image (camera counts) $-B_{\lambda}$ is a constant bias (camera counts) $-k_{\lambda}$ is a camera response per exposure time $-\tau$ is the camera exposure time

Instrumentation

³SRI International, Menlo Park, CA, USA, ⁴Boston University, Boston, MA, USA

Instruments located at Poker (66.1[°]N magnetic) Poker Flat Incoherent Scatter measure emission related to

Fig 3.) Image using an all-sky imager

PFISR electron density data used to find peak electron densities

Step 1.) Check if at least 80% of AC data and 80% of LP data is available during scintillation

Step 2.) Filter out data points if $DNe > \frac{Ne}{2}$ (LP data), DNe > Ne (AC data) (gray oval Fig. 5)

Step 3.) Find maximum electron densities for each time step PFISR outputs data (red oval Fig 5)

Fig 4.) Cartoon of data filtering due to uncertainty criteria. Red ovals (max densities), gray ovals (data filtered out due to large uncertainties)

Step 4.) At time t let Ne_1 be the greater density measurement ($Ne_1 > Ne_2$) if $Ne_1 - DNe_1 < Ne_2 + DNe_2$ the measurements fall within each others uncertainty and all data is removed at that time step **Step 5.)** Compare remaining peak densities from AC data to LP data

Energy-based Hypothesis:

ASC is used to measure emissions of aurora

Step 1.)

Fig 6.) Remove satellites not within magnetic zenith limit

Step 3.)

$$\rho_{630/428}(t) = \frac{M_{630.0}}{M_{428.0}}$$

- Use the ratio of the ASI red image (630.0 nm) pixel intensity to the blue (428.0 nm) pixel intensity
- Red/Blue ratio of 1.35 corresponds to E/F region cutoff of 135 km

Method

Density-based hypothesis:

Fig 5.) Process showing when measurement uncertainties overlap

Step 2.)

Step 4.)

Fig 8.) 630nm/428nm ratio during scintillation event occurring on 03/18/2015.

Fig 9.) Results of density-based percentage year-by-year

Comparison of Density to Energy Based Method

irregularity layers

- Used the all-sky imager to predict irregularity layers due to precipitating electrons
- Scintillation likeliest to occur in E region • Future Work:
 - based methods disagree

NSF AGS-1651465 and NASA award 80NSSC21K1354 supported this work. CEDAR Student Travel Support, ISR Workshop travel support Vaishnavi Sreenivash, Yang Su, Pablo Reyes ASI Data Accessed: ftp://optics.gi.alaska.edu/PKR/

Results

s L1 Scintillation	11			
3.2 3.6	Year	E	F	Total
5.5	2014	53	15	68
13 <u>4</u>	2015	13	6	19
	2016	11	2	13
	2017	5	0	5
	2018	6	0	6
	Total	88	23	111
89.4	L2C	\leq		
75.9	Year	E	F	Total
	2014	28	6	34
	2015	9	5	14
E	2016	8	0	8
	2017	5	0	5
	2018	2	0	2
2018 2019	Total	52	11	63

Density Based			
E	F		
114	26		
(65%)	(15%)		
19	15		
(11%)	(9%)		

- Survey 174 events from 2014-2018
- PFISR ASI Agree 74% and disagree 26%
- Majority of scintillation occurs in E region

Conclusion

Updated the density-base method to more accurately predict

Case study analysis of events when the density-based and energy-

Acknowledgments

- PFISR Data Accessed: <u>http://cedar.openmadrigal.org/</u>, https://data.amisr.com/database/

References

- [1] Su, Y., S. Datta-Barua, G. S. Bust, and K. B. Deshpande (2017), Distributed sensing of ionospheric irregularities with a GNSS receiver
- [2] S. Datta-Barua, P. Llado, and D. L. Hampton (2021), Multiyear detection, classification and hypothesis of ionospheric layer causing GNSS
- [3] Sreenivash, V., Su, Y., & Datta-Barua, S. (2020). Automated ionospheric scattering layer hypothesis generation for detected and classified auroral GPS scintillation events. Radio Science, 55, e2018RS006779. https://doi.org/ 10.1029/2018RS006779 [4] English, A., Stuart, D. J., Hampton, D. L., & Datta-Barua, S. (2024). Automated Nighttime Cloud Detection Using Keograms when Aurora is [5] The Poker Flat Incoherent Scatter Radar (PFISR). AMISR Radar. Retrieved: Mar. 2023. https://amisr.com/amisr/about/about_pfisr/
- [7] Space Weather Prediction Center. (2024). Aura Tutorial. Retrieved from https://www.swp.noaa.gov/content/aurora-tutorial (accessed: