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lonospheric Scintillation Summary
e Frequently disrupts satellite communication 3D domain decomposition and MPI parallelization 17500 N\ . * Developed a new high-performance Finite-Difference
* One cr)]f the most regular and important forms of space + Perfectly Matched Layer (PML) absorbing boundary condition 15000 B 'Iglmg-Dodrr;aln cggle o o
weather 12500 * Designed for radio wave propagation in magnetized,
: : e Effects of a magnetized, collisional plasma . : )
 (Causes ranging errors and sometimes complete loss of & P s collisional plasmas like Earth’s lonosphere
signal (loss of lock) * Easily couples to any external simulation/model 5 « FDTD matches raytracing with large scale gradients, but
7500 c . .
* Short timescale amplitude and phase fluctuations of * Reads in electron density array provides far more information
radio/GNSS signals e Near to far field transform (NTFF) > * Small scale irregularities cause significant distortion of the
* Driven by ionospheric density irregularities and instabilities . L . . L 2500 original signal
v : p. v L  Time domain signal for E and B at any location outside main grid E £
 Observed primarily at edges of polar cap patches in high e oS N—— Next St
latitude ionosphere, associated with the gradient drift * Compute Radiation Patterns X tm) | .ex. EPS -
instability e Realistic Antenna/Array sources for HF propagation FARR FDTD simulation of a 1 MHz, 16 element array, * Further explore scintillation by irregularities with scale
- .. . . . . - phased at a 60° elevation angle. The simulation is run on 4 : :
* Scintillation by small scale ionospheric irregularities « Total field/ scattered field plane wave sources separate processors, demonstrating realistic beamforming near wavelength of radio signal o o
remains unexplored and the perfectly matched layer boundary condition.  Characterizing backscatter from ionospheric instabilities
/A\ such as gradient drift and Farley-Buneman
 Large scale runs to reconstruct scintillation indices on the
ground
Comparison with Ray Tracing IRl Electron Density Profile E 'E
— gy « 1 MHz pulse launched at 60 elevation angle with D ve Rartacin Note: Movies of some figures are available K
Rea——. YW g vs Raytracin
B L Y background electron density from IRI 10 . online at tinyurl.com/farr-fdtd
" -~w4g - . 8 . Y . // ——- IE'IA-\lF;II:}{LAP Bounds
prn * Simulated using a 16-element phased array in FARR o Near Field
* Numerically traced using PHaRLAP code with elevation

angles spanning HPBW from FDTD simulation
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