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Abstract

Data 

Equatorial Spread F (ESF) is a phenomenon that occurs in the magnetic equatorial 

ionosphere and can disturb radio signal propagation at night. This phenomenon is 

caused by depleted areas of plasma density (also known as bubbles) that begin at the 

bottom of the ionospheric F region. The Jicamarca Radio Observatory (JRO) in Peru has 

made it possible to study ESF using the 50 MHz Jicamarca ionospheric radar in the low-

power mode called JULIA (Jicamarca Unattended Long-Term Studies of the Ionosphere 

and Atmosphere). The radar detects backscattered signals caused by the ESF 

structures, generating Range-Time-Intensity (RTI) power maps that show the temporal 

and spatial (altitude) occurrence of ESF. The Madrigal database contains over 20 years 

of RTI maps measured at Jicamarca, allowing us to identify different ESF morphological 

patterns or structures [1,2,3], such as Bottom-type, Bottomside, and Radar plumes. 

These patterns show the evolution of the  ESF and can be used to forecast it. However, 

manually identifying these structures is a time-consuming process. To overcome this 

issue, a deep learning model using the U-Net convolutional neural network architecture 

was implemented to segment and classify four morphological patterns automatically. The 

model was trained using various features such as backscatter power, the F10.7 solar flux 

index, the disturbance storm time index, the Moon phase, the vertical drift, the zonal drift, 

and the statistical texture information of backscatter power and vertical drift. The 

proposed model achieved an accuracy of 90.01% in segmenting and classifying the 

structures. This model was applied to the RTI database, allowing us to obtain climatology 

statistics for each morphological pattern.

Building training data

Figure 1: RTI map of echoes measured by 

JULIA on 26 February 2010.

Figure 7: Stack of SNR, Zonal Drift, Vertical 

     Drift, F10.7, DST, DOY, lunar phase, 

    SNR, and vertical drift statistical 

     textures(Mean intensity, Contrast,     

    Uniformity, Entropy, Smooth, Third    

    Moment).

Figure 4: Binary RTI map, after removing small artifacts.

Figure 5: Manually identification using four classes  

          (Bottom-type, Bottom-side, Radar plumes, and  

E-echoes) 

Training model

Data Set N. Of RTI maps

Train 391 (73%)

Validation 98 (18%)

Test 50 (9%)

Table 1: Data Set Size.

Figure 8:Training the model with the feature stack  

  and the low resolution labeled RTI map.
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Results

UNET

• Learning rate: 0.001

• Optimizer: Adam,

• Activation: RELU.

• Loss function: Categorical Cross entropy.

• Number of epoch: 42

• Batch size:32

• Filter size: 3x3 

• Dropout rate:0.1,0.2,0.3

• Padding: Same

• Kernel Initializer: He normal, Glorot normal

Table 2: Model configuration.

• Manually identifying morphological patterns is a challenging visual task. This 

drove the development of an automatic segmentation model based on the UNET 

convolutional neural network.

• Our proposed approach involves choosing the most suitable features and training 

a convolutional neural network architecture that helps our algorithm achieve good 

performance (90.01%) in segmenting the morphological patterns in RTI maps.

• Applying our methodology to the Jicamarca database, we can analyze the 

occurrence of each morphological pattern during each season (Solstice and 

Equinox) and during the solar cycle. Moreover, we can automatically get reports 

(start and end time, max and min range) for each morphological pattern. 
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Figure 2: 2930 RTIs maps corresponding  

 to the years 1999 and 2022.

 

Figure 3: RTI map showing the backscatter power. Figure 6: Low resolution segmented RTI map (15 min by 15 

km) [4].

20 Feature Bands
 

U-NET Model
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Figure 9:U-Net Architecture.
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Figure 12: Confusion Matrix and   

       accuracy using  98 RTIs. 

Figure 13: Confusion Matrix and       

      accuracy using  50 RTIs. 

Figure 14:  Figure 10 labeled manually. 
Figure 15: Predicted Segmentation (Accuracy=96.61 %) . 

Figure 16:  Figure 11 labeled manually. 

Figure 10: RTI map  measured on 18 Feb 2005. 

Figure 11: RTI map  measured on 15 Dec 2012. 

Figure 17: Predicted Segmentation (Accuracy=98.20%) .

Figure 18: Occurrence Rate maps of each morphological pattern for each season   

 during Solar Minimum and Quiet Days (kp<4). The occurrence maps were                               

    obtained after we applied the UNET model on the Jicamarca database (2930 RTIs ). 
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Using the SNR, physical parameters and 

statistical textures we built feature bands.

For training, validation, and 

testing the model, we used 539 

RTI maps. The validation data 

set allowed us to observe the 

model performance  during the 

hyperparameters tuning. While 

the testing gives us the model 

performance in unseen data.
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