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1 Abstract

Using a rigorous solution for the electromagnetic fluid equations, it is found that they do not predict the electric-field-
mapping that is usually expected, and that even if they did, the ionospheric conductance would have a significantly
smaller value. In fact, these equations predict wavelike effects on all transverse scales investigated, which are par-
tially associated with short parallel wavelengths, and partially associated with the interaction of multiple modes. It is
also found that the electrostatic-wave theory that is used, for example, to derive the spectrum of incoherent scatter,
will likely produce unphysical results if extended to transverse scales longer than about one hundred meters. By
way of comparison, the new solution is a linearized, causal, driven steady-state solution for the ionospheric con-
ductance and electric field mapping, but it does not include the nonlinear elements of the time evolution, which are
the purview of time-domain simulations. Also, although the signal is 3-dimensional, the background ionosphere is
assumed horizontally uniform. Hence, the results are best understood as baseline, fundamental results that inform
our thinking broadly.

2 Electric Circuit Theory and Electrostatics
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3 Gedankenexperiment: Slab Ionosphere
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4 Making This Rigorous: 5-Moment Fluid Eqns.

an assemblage of these lines, which can include branches, loop backs, or whatever. Assemblages are created
to model realistic physical structures using specialized software packages such as Touchstone [EEsoft] that20

solve the transmission line network.
However, transmission line models in electrical engineering normally involve a single wave mode, and

circuits are generally designed to ensure that only one mode is supported. In the ionosphere we do not
have this luxury, and so we will generalize the usual transmission line theory to one that includes multiple
modes. Doing this means that the scalar admittance, which relates the electric and magnetic fields, must25

be replaced with a tensor such that there is a “polarization vector” for each mode. Although this adds
considerable complexity, and means that the full software implementation of the model will be delayed to
future work, we find that the ionosphere often has only one viable mode at any given altitude. We use
this finding to analyze the critical question of when the ionosphere is not thin compared to the parallel
wavelength. We find that this generally occurs when the transverse wavelength is less than about 100 km,30

and so the assumption of electrostatic equilibrium is contraindicated below this scale.
Electrostatic equilibrium is obtained by solving the equations of motion as though they determine the

solution to a boundary value problem. By “electrostatic theory,” or “full electrostatic theory,” for emphasis,
we refer to the practice of assuming that this solution is an approximation for the steady state solution found
through the Laplace transform. A weaker form of the electrostatic assumption involves the substitution of35

electrostatic waves for electromagnetic waves. The validity of this assumption is a distinct question from
that of electrostatic theory, which does not include wavelike effects. We also analyze this weaker assumption,
by substituting the Poisson equation for the Maxwell equations. We find that the electrostatic waves are
good substitutes below about 100 m in transverse wavelength, but above 100 m they are not useful.

We are sometimes asked how the electrostatic theory could possibly not be applicable. Although we do40

have answers, we have found that this question is easier to discuss after establishing the background of a
theory that can replace electrostatic theory. Hence, after deriving the electromagnetic solutions needed for
the model, we discuss how these derivations relate to electrostatic theory at the end of Section 2. Then,
in Section 5, a gedanken experiment is used to illustrate how electrostatic theory breaks down, when wave
effects become important.45

2. Solution of the Equations of Motion, and Model Building Blocks

We adopt the electromagnetic 5-moment fluid equations [e.g., Schunk and Nagy, 2000] for physical
description of the ionosphere. However, the details of these equations of motion are really a distraction
from the purposes of this paper. Hence, we present these equations (B.1) and the derivation of the matrix
H5 (Figure B.1) in Appendix B. Suffice it to say that in addition to the Maxwell equations, our equations50

of motion (B.1) include the continuity, momentum, and energy equations for electrons and one species of
ion. Sources such as wind, background electric field, photo-electrons, and gravity are set to zero or omitted,
except in the case of the explicit external source we add to derive the driven steady-state solution. Hence, the
equation-set expands on that used by Cosgrove [2016] by adding the continuity and energy equations. It is
appropriate for exploring the relationship between electrostatic and electromagnetic theories of the ionosphere55

for scale-sizes greater than a few tens of meters, but it does not include kinetic effects, the dynamics of the
neutral gas, or interactions between different species of ions (although the latter two categories could, in
principle, be added to the analysis with little change in method). But instead of dwelling on these well known
equations of motion, we here present our general method of solution in abstract form, with unessential details
relegated to Appendix B.60

Taking the Fourier transform in space, the equations of motion (B.1) can be written,

@ ~X

@t
� iH5

~X = ~F (t), (1)

where ~X is a vector containing the deviations from thermal equilibrium of the 16 dependent variables, H5

is an invertible 16 ⇥ 16 matrix that is independent of time, and ~F (t) is a length-16 time-dependent vector
containing the Fourier transforms of the nonlinear terms. The invertibility of H5 follows from the assumption
that the equations of motion solve an initial value problem with 16 degrees of freedom. The variables in ~X65

are defined in Appendix B, and consist of scaled versions of the densities, velocities, pressures, and electric
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Nonlinear terms we will drop, 
like electrostatic theory.
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5 Use Two Wave-Modes and Stack Slabs, to make
a Realistic Model

Stack Slabs and Use Two Modes

We follow the approach of [Cosgrove] to analyze the characteristic waves associated with the equation
set (1). The equations are linearized, and then Fourier transformed in time and space, which effectively
assumes that the spatiotemporal dependence for the dynamical variables is proportional to ei(!t�~k·~r). Lin-
earization is justified by the idea that we are exploring the dynamical evolution of small perturbations (i.e.,
second order terms negligible) about some equilibrium state, and that these represent characteristic motions
of the system about the equilibrium. The term equiibrium, here, means a state with vanishing time deriva-
tives. Hence, the background equilibrium should be determined first, which is trivial for thermal equilibrium,
but somewhat more difficult if there are drivers such as winds and gradients.

The inclusion of drivers, that is, winds and gradients, is needed to evaluate the stability of the wave
modes. However, in this paper we are concerned with characterizing the stable waves that exist with respect
to thermal equilibrium [e.g., Bernstein ref and the ref he references]. In thermal equilibrium the background
electron and ion velocities and the background electric field are all zero. Hence we write the dynamical
variables as the sum of zeroth and first order parts as follows,

ne = n̄0 + �ne,

ni = n̄0 + �ni,

~ve = �~ve,

~vi = �~vi,

pe = kBTnn̄0 + �pe,

pi = kBTnn̄0 + �pi,

~E = � ~E,

~B = ~Bg + � ~B,

where Tn is the neutral temperature, ~Bg is the geomagnetic field, and n̄0 is the background plasma density.
Vex, Vey, Vez, Vix, Viy, Viz, Ex, Ey, Ez, c�Bx, c�By, c�Bz

With the equations (1) satisfied in zeroth order, the characteristic waves are described by the first order
equations, that is, the equations formed by the terms from (1) that are first-order in the perturbation quan-
tities (the quantities with � in front of them). Since, after Fourier transforming, these equations are linear
and homogenous, we can write them as �! ~X + H5

~X = 0, where
~X = (�Vex, �Vey, �Vez, �Vix, �Viy, �Viz, �Ex, �Ey, �Ez, c�Bx, c�By, c�Bz, �Ne, �Ni, �Pe, �Pi) , �V↵� = m↵

e !↵�v↵� ,

�N↵ = e

✏0|~k|�n↵, �P↵ = e

✏0|~k|kBTn
�p↵, !↵ =

q
n̄0e2

m↵✏0
are the electron and ion plasma frequencies, ~k is the

wavevector, and the matrix H5 is shown in detail in Figure 1. These rescalings provide all the dynamical
variables with the same units (units of electric field), and improve the conditioning of H5, which matrix
elements all have units of frequency. To be clear, H5 is formed without droping any terms or making any ap-
proximations, so that, by the equation �! ~X+H5

~X = 0, its eigenvectors/eigenvalues constitute the complete
and exact set of linear waves for the 5-moment fluid equations (1).

The eigenvalues of H5 are the complex frequencies ! of the supported waves, where the real part is
the frequency of oscillation, and the imaginary part is the dissipation rate. The eigenvectors of H5 are the
polarizations of the supported waves, that is, they determine the relative amplitudes and phases for the
dynamical variables in ~X.

This formulation is equivalent to deriving the complete linear dispersion relation for the equation set (1).
However, although finding the exact dispersion relation for (1) is possible with due patience, finding the
frequencies that satisfy the dispersion relation still requires finding the 16 complex roots of a polynomial,
and does not determine the polarization vectors.

In what follows we will solve for the eigenvectors/eigenvalues numerically, and compare the results for
different wave modes over altitude and transverse wavelength.

Appendix II: Parameter Choices
The ionospheric parameters parameters used in the analysis are described and explained in this appendix.
An electron density profile derived from Sondrestrom incoherent scatter radar data, with E region arc and
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9 Major Deviations from Electrostatic Theory

• The ”wave-Pedersen conductivity” is the conductivity that contributes to ionospheric conductance, and it is roughly
half the usual Pedersen conductivity. A large part of the difference can be attributed to inclusion of the imaginary
part of ω in the conductivity equations, which is missing in electrostatic treatments.

• For transverse wavelengths of a few hundred kilometers and below, the parallel wavelength is often too short to
ignore. To get the parallel wavelength correct, it is important to evaluate the dispersion relation for complex ω as
a function of real k, rather than the reverse.

• Modal interaction becomes very important in the lower E region, where a second mode arises and there is a
(near?) degeneracy of the two modes. The signal reflects strongly at the altitude of the degeneracy, so the
conductivity at lower altitudes does not contribute to the ionospheric conductance seen from above.

• Altogether, the ionospheric conductance at longer transverse wavelengths is reduced by 70%-80%, and resonance
is possible at shorter wavelengths.

• Substituting electrostatic waves for electromagnetic waves will likely give unphysical results for transverse scales
larger than a couple of hundred meters. The wavelength for the Alfven wave is too long by more than an order of
magnitude, and there is no analogue for the Whistler wave.
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