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1 Abstract

a Realistic Model

Using a rigorous solution for the electromagnetic fluid equations, it is found that they do not predict the electric-field-
mapping that is usually expected, and that even if they did, the ionospheric conductance would have a significantly
smaller value. In fact, these equations predict wavelike effects on all transverse scales investigated, which are par-

tially associated with short parallel wavelengths, and partially associated with the interaction of multiple modes. It is
also found that the electrostatic-wave theory that is used, for example, to derive the spectrum of incoherent scatter,
will likely produce unphysical results if extended to transverse scales longer than about one hundred meters. By
way of comparison, the new solution is a linearized, causal, driven steady-state solution for the ionospheric con-
ductance and electric field mapping, but it does not include the nonlinear elements of the time evolution, which are
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the purview of time-domain simulations. Also, although the signal is 3-dimensional, the background ionosphere is

assumed horizontally uniform. Hence, the results are best understood as baseline, fundamental results that inform
our thinking broadly.
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2 Electric Circuit Theory and Electrostatics
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4 Making This Rigorous: 5-Moment Fluid Eqns.

Nonlinear terms we will drop,
like electrostatic theory.
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Polarization Vectors
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Phase Rotation versus Transverse Wavelength
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6 Back to the Gedankenexperiment, Check the
Electrostatic Criteria for the Two Waves
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) 7 Model Validation and Three Types of Non-
Electrostatic Effect

lonospheric conductance versus
altitude compared to electrostatic.
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The new electromagnetic ionosphere and how it differs from the old electrostatic one
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8 Summary of Theoretical Results
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Equatorial:

Field aligned current for source at 103 km alt., for three field lines with peak altitudes 135 km, 155 km, and 175 km

8 km transverse wavelength (this one is a null result, it’s too short)

200

100 __Zg : . . &
—-600 -400 -200 0 200 400 600

200 " 15 km transverse wavelength

100 _m
-600 —-400 -200 0 200 400 600

200 '50 km transverse wavelength -

100 - 1 T T T — T
-600 —-400 -200 0 200 400 600

200 100 km transverse wavelength

100 L === — =———S-_

—600

—400 -200 0

200 400 600

l[atitudinal distance (km)

0.001 &
B

1.504

nits)

rbitray u

(a

0.

(mhos)
-

0.75

J/Div Input Admittance versus Look Altitude

Ey and Bx (rescaled for plotting together)

00 4
100 15 25
altitude (km)
Parallel Wavelength
106 4
—_— Alfvi
—_— Whi
25
Ititude (km)
Wave Admittances versus Altitude
—— Y Whistl
— Y Alfv
.04
0.54
T T T T T T T
100 150 200 250 300 350 400
Ititude (km)
Alighment of the Whistler and Alfven modes
0.4
T
350
llllllll (km)

Low Latitude:
Analyzing the field line from Tonga to IKON during eruption
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9 Major Deviations from Electrostatic Theory

e The "wave-Pedersen conductivity” is the conductivity that contributes to ionospheric conductance, and it is roughly

half the usual Pedersen conductivity. A large part of the difference can be attributed to inclusion of the imaginary
part of w in the conductivity equations, which is missing in electrostatic treatments.

e For transverse wavelengths of a few hundred kilometers and below, the parallel wavelength is often too short to

ignore. To get the parallel wavelength correct, it is important to evaluate the dispersion relation for complex w as
a function of real k, rather than the reverse.

e Modal interaction becomes very important in the lower E region, where a second mode arises and there is a

(near?) degeneracy of the two modes. The signal reflects strongly at the altitude of the degeneracy, so the
conductivity at lower altitudes does not contribute to the ionospheric conductance seen from above.

e Altogether, the ionospheric conductance at longer transverse wavelengths is reduced by 70%-80%, and resonance

IS possible at shorter wavelengths.

e Substituting electrostatic waves for electromagnetic waves will likely give unphysical results for transverse scales
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larger than a couple of hundred meters. The wavelength for the Alfven wave is too long by more than an order of
magnitude, and there is no analogue for the Whistler wave.
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