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Introduction BaCkground EPBs are regions usually in the low latitudes/ equator where there is a depleted segment of plasma density in the

Equotonal Plane: T « 1200 s

Equotornial Plone: T = 2000 s Couotoriol Pione: T = 3600 s

ionosphere. They occur most often during the postsunset (18-24 LT) and postmidnight (0-6 LT) hours, when the E-Region ionosphere
is not present (Aa et al.,, 2020b). Gravity waves, enhanced zonal eastward electric fields, neutral wind shear, and nighttime medium-

Equatorial Plasma Bubbles (EPBs) are one of the most severe o
ionospheric phenomena regarding the creation of amplitude and phase
scintillations of radio signals. Generally, EPBs remain close to the
magnetic equator, not usually varying more than 15 to 20 degrees from =
it. When EPBs extend into midlatitudes (greater than +/- 25 ° Mlat), §
they are called Super Equatorial Plasma Bubbles (Super EPBs). z
However, it is not known how often this phenomenon occurs or under =
what solar and geomagnetic activity conditions cause such an expansion
and the scintillations they induce. In this analysis, multiple super EPB

1000

scale traveling ionospheric disturbances (MSTIDs) have been suggested as seeding mechanisms for triggering plasma bubbles, which
are thought to be a result of the generalized Rayleigh-Taylor (R- T) instability (Sultan 1996).
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The EPB is shown growing over time in Figure 1 (Yokoyama et al., 2014 ). The blue shows the low density, and the yellow shows the

of the heavier fluid. The bubble then bifurcates into smaller structures called Equatorial Plasma Irregularities. The growth
- rate of the R- T instability is given by the simplified Equation (1) (Sultan 1996).

l high density. A small perturbation can grow significantly because of an unstable equilibrium where lighter fluid tends to rise to the top

events are explored and analyzed using the Swarm satellite el L e T s -

constellation, VISTA TEC, GOLD, and OMNI solar wind data to better Figure 1. Simulation of the growth of an Equatorial Plasma Bubble Vir = ( 1 ) ( ?P E) < (E _ UPFT + g ) Brr (1)
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Although these EPBs have many similarities, it is also important
to note the differences. Event 2 occurred during the early main
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T Y 45 N phase of the storm, while Events 1 and 3 occurred solidly during
P T T T A A A the main phase. Additionally, the flow speeds and flow pressures
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Figure 3. Solar wind data from NASA OMNI showing the B Total Electron Content (TECU) ofthe solar winds }}ad different stljengths. Super EP.B S may
field (a), flow speed (b), Flow pressure (c), and SYM-H index | . occur under a variety of solar wind plasma conditions.
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