

Open Science Practices at the Community Coordinated Modeling Center

Ja Soon Shim^{1,2}, Aleksandre Taktakishvili^{1,3}, Chiu Wiegand¹, Darren De Zeeuw^{1,3}, Richard Mullinix¹, Lutz Rastaetter¹, Min-Yang Chou^{1,3}, Jack Wang^{1,3},

Jia Yue^{1,3}, Masha Kuznetsova¹, and CCMC team

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ² Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805, USA ³Department of Physics, Catholic University of America, Washington, DC 20064, USA

http://ccmc.gsfc.nasa.gov

Abstract

Open Science is defined as "the principle and practice of making research products and processes available to all, while respecting diverse cultures, maintaining security and privacy, and fostering collaborations, reproducibility, and equity" by Federal Agencies. The CCMC has been practicing open science based on FAIR (Findable, Accessible, Interoperable and Reusable) principle by providing access to the state-of the art space science and space weather models to users around the world through various simulation services such as Runs-on-Request, Instant Runs, Real time runs on iSWA system. The CCMC also provides a wide range of tools and framework to help users easily utilize modeled data. One of the tools is the official NASA opensourced software called Kamodo. Kamodo allows users to work with complex space weather models and data with little or no coding experience. Additionally, to support transparent model validation efforts, the CCMC is providing an integrated and flexible framework called CAMEL. CAMEL allows users to seamlessly compare model outputs with observational data sets. Currently, we are working on a user-friendly database of the papers and research that used CCMC services, so that the future users will have open access to previously performed research by other users and its details. In this presentation, we will show the open tools and resources provided by the CCMC. Furthermore, we will share our new efforts to support open data and open science results.

Ionosphere-Thermosphere (IT) Models available at CCMC

Runs on	Request					Instant R	uns	
Empirical Models		Physics-based Models			Domain	Model	Full Name: Developers	
Domain	Model	Full Name: Developers	Domain	Model	Full Name: Developers	Ionosphere	*IRI (v2007, 2012, 2016, 2020)	The International Reference Ionosphere: D. Bilitza, NASA/GSFC
Ionosphere *IRI (v2007, 2012, 2016, 2020)		2012, D Bilitze NASA/CSEC			Sami3 is Also a Model of the lonosphere: J. Huba et al., NRL	Thermosphere	*NRLMSIS (v00, 2.0)	NRL Mass Spectrometer and Incoherent Scatter model: J. Emmert
		D. Bilitza, NASA/GSFC	Ionosphere	SAMI3 (v3.22)	SAMI3 w/ HWM14/NRLMSIS	memoophere	*HWM14 (v2014)	Horizontal Wind Model 2014: D. Drob, NRL
	*DTM (v2013, 2020)	The Drag Temperature Model: S. Bruinsma, CNES			SAMI3 w/ TIE-GCM	High-latitude	Weimer2005	D. R. Weimer, VT
		NPI Mass Spectrometer and			SAMI3 w/ ICON/TIE-GCM		*SuperDARN Convection	Super Dual Auroral Radar Network Convection
Thermosphere	*NRLMSIS (v00, 2.0)	Incoherent Scatter model: J. Emmert	lonosphere/ Thermosphere	TIE-GCM (*v2.0, 2.5)	Thermosphere lonosphere Electrodynamics General Circulation Model: W. Wang & M. Wiltberger, HAO, NCAR	Electrodynamics	Models (v4.3.1)	Model: Evan G Thomas, Dartmouth College
	*JB2008	The Jacchia-Bowman 2008:				WBMOD ionospheric scintillation model will be available soon		
	*HWM14 (v2014)	Horizontal Wind Model 2014:		*GITM (v21.11)	Global Ionosphere Thermosphere Model: A. J. Ridley et al., UM	IT Models C	oupling w/ MHD &	Lower Atmosphere Drivers
High-latitude	Weimer2005	D. R. Weimer, VT		CTIPe (v4.1)	Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model: T. Fuller-Rowell & M. Codrescu, NOAA SEC	lonosphere Models:	D	rivers From Above
	*Ovation Prime (v2.3) Cosgrove-PF	Prime P. Newell, JHU APL e-PF Cosgrove Poynting Flux:				SAMI3, PBMod	High-Latitude Float is Potential Particle Pr	recipitation Penetration Electric Solar irradiance
Electrodynamics			Scintillation	PBMOD (v6.3)	Physics Based MODels:	PBIVIOU	Electric Potential Models Models	dels Field Models Models (FISM2)
					Whole Atmosphere Community			CCMC Software
Plasmasphoro	BSDM (v2021)	Belgian Space Weather Integrated Forecasting Framework (SWIFF)	Whole Atmosphere	*WACCM-X (v2.2)	Climate Model With Thermosphere and Ionosphere Extension: Han-Li Liu, NCAR/HAO	Neutral Atmos: HWM TIE-GCM	Ionosphere-Thermosphere M	odels: CTIPe, TIE-GCM, GITM Software Whole Atmosphere Models
riasiliaspilere		Viviane Pierrard, Royal Belgian Institute for Space Aeronomy	Assimilative M will be availab	lapping of Geospac le soon	e Observations (AMGeO)	WACCM-X, GITM	Lower Atmosphere Models Drivers From Bel	Low Atmosphere Observations (WACCM-X, WAM-IPE)

e A	MAG4 DBM SWMF-AWSoM		VPIC PAMHD		COSGROVE-PF Ovation Prime WACCM-X WBMOD
GCR BON NOVICE	Heltomo IPS	GUN	NICS	NAIRAS	IRI-2020 JB2008
MAGIC SNB3GEO SEPSTER	Heltomo SMEI	AMPS	HYPERS	SEAES-S	P Weimer-deltaB
WSA NLFFF RELeSE	CORHEL	PS VP		AE-9/AP-S	Weimer IE
ASAP ASSA AMOS	CORHEL-CME	IGRF	Tsyganenko	AE-8/AP-8	PBMOD
IAG4 UIWASEP	iPATH	WINDMI	LANLstar	UPOS RB	GITM
	PREDICCS	LFM-MIX	-TIEGCM	Li Rad Belt	NRLMSISE
PFSS.Macheice PFSS.Luhmann SEPMOD	REIeASE	SWMF+RC SWMF+RC	CM+RBE	RCM Fok CIMI	ABBYNormal
PFSS.Petrie ANMHD	WSA-ENLIL+SEPMOD	SWMF+RC			SWACI-TEC
AWSoM EEGGL SRPM	WSA-ENLIL+EPREM	SWMF+RCM	M+deltaB		FODYN USU-GAIM
SWMF.SC+EEGGL+CME	WSA-ENLIL WSA-ENLIL+Cone	GAMERA-RCM-REMIX OpenGGCM	X GIC +CTIM	SAMI3-T	GMAT SAMIS
	nodels, model chains 8	& frameworks fo	r model cou	ipling	
	Mode	els at CCMC			

* lonosphere-Thermosphere models for which the source code is available to the public

(https://ccmc.gsfc.nasa.gov/tools/kamodo/#public-code-repository **CCMC Kamodo Analysis Suite**

- An open-source software developed by the CCMC to specifically address the complex problem of simplifying access to and utilization of the Heliophysics model data hosted at the CCMC.
- Includes model output readers and interpolation codes, unit conversion
- Handles custom data formats, grids, and interpolators 'behind the scenes'
- Includes fly-through simulation outputs
- Enables utilization of simulation outputs as a virtual reality for mission planning
- Facilitates interfacing with observational data centers
- Operates with popular Python packages

var -	rno # variable name
SatPlo	ot4D(var, cdf dict['utc time']['data'], cdf dict['cl']['data']
	<pre>cdf_dict['c2']['data'], cdf_dict['c3']['data'],</pre>
	<pre>cdf dict[var]['data'], cdf dict[var]['units'],</pre>
	'GDZ', 'sph', 'GSE', 'orbitE', 'CTIPe', type = '3D',
	<pre>body = 'none', htmlfile = 'Figure17.html')</pre>

Satellite extraction from model: CTIPe GSE coordinates

CCMC is also

- **Hosting Simulation Results Provided** by Community:
- Users can use and visualize the provided simulation results via the CCMC visualization services
- e.g., WAM-IPE (Whole Atmosphere Model and Ionosphere Plasmasphere Electrodynamics) model outputs provided by NOAA SWPC
- Hosting Community Developed Tools: e.g., WSA Dashboard

Simulation Services: Runs on Request (RoR)

30K runs archive Over 2,000 runs per year 400 unique users per year

community Run databases can be utilized for statistical analysis and ML projects

Enables model validations by the entire

Permits scientists to utilize state-of-the-art models

CCMC Signature Service

Integrated Space Weather Analysis System **ISVA**

without barriers

0.0.0	iNtenrated Snare Weather Analysic System (ISWA Primary) - Ver	rsion 1.6.0.[AltoSav]	
	📔 🗟 💷 http://iswa.ccmc.gsfc.nasa.gov/8080/iswaSystemWebApp/		٩
iNtegrated Space We /manager M.	ACFUSE_FS_SSHFS blender.org - Featur INtegrated Space We MCS Invoice Tracking Adams Pee Wee Foot Restrictin	ng Access t iNtegrated Space We JIRA http://space.rice.ed Overview (Google W	
WDC Kyoto Dst		Clear 1 survit Deaters	0

 Ingest observational and simulated realtime data streams

 Supporting DTM, CTIPe, GITM, IRI, OpenGGCM, TIE-GCM, WACCM-X, SWMF in Jupyter Notebook

• NASA open-source software

- Public Code Repository Kamodo-Core Repo: https://github.com/nasa/Kamodo-core Kamodo Readers Repo: https://github.com/nasa/Kamodo All are welcome to contribute to the Kamodo open source project
- Ringuette, R., De Zeeuw, D., Rastaetter, L., Pembroke, A., Gerland, O., & Garcia-Sage, K. (2022). Kamodo's model-agnostic satellite flythrough: Lowering the utilization barrier for heliophysics model outputs. Frontiers in Astronomy and Space Sciences, 9, 1005977. https://doi.org/10.3389/fspas.2022.1005977
- Ringuette, R., L. Rastaetter, D. De Zeeuw, A. Pembroke, and O. Gerland (2023). Kamodo: Simplifying model data access and utilization. Adv. Space. Res. Accepted. https://doi.org/10.1016/j.asr.2023.03.033

Neutral density along a synthetic satellite trajectory from the CTIPe model run (from *Ringuette et al., 2023*)

CCMC CAMEL (Comprehensive Assessment of Models and Events based on Library Tools)

- The CCMC has been leading model-data comparison since 2008 as an unbiased evaluator. To meet the needs of the community worldwide, the CCMC developed and is hosting the CAMEL framework to support model-data comparisons more effectively and efficiently.
- The CAMEL framework utilizes: o CCMC Metadata Registry (CMR) for metadata of CCMC models, model runs, and numerical and nonnumerical (e.g., image) outputs. • Runs-on-Request (RoR) system Postprocessing tools
- The CAMEL front end interactive visualization tool allows users to plot model outputs and observation data sets together while providing options to calculate various skill scores from our library of skill scores.
- The CAMEL framework provides an Application Programming Interface (API) allowing users to download data sets/output available on the CAMEL backend

Neutral density validation led by Jack Wang (jack.c.wang@nasa.gov), Ionosphere model validation led by Min-Yang Chou (min-yang.chou@nasa.gov)

Comprehensive Assessment of Models and Eve	nts based on Library tools		COORDI MODELI CENTER
Thermosphere Neutral Density Campaign			
Data Coverage Chart Related References			
Skill Scores		Data Plots	
Events to Score	Solutions to Score	Observations	Phases to Score 🕜
☑ 2001-03-TP-02 Dst (min.) = -387 CHA ②	CTIPe-01		prestorm phase
🗆 2002-04-TP-01 Dst (min) = -57 CHA GRA GRB 🕜	DTM2013-01		main phase
🗆 2002-09-TP-01 Dst (min) = -109 CHA GRA GRB 🕜	DTM2020_operational-01	🗆 GRA GRACE_A 🕜	recovery phase
🗆 2002-09-TP-03 Dst (min) = -181 CHA GRA GRB 🕜	☑ JB2008-01 🕜	🗆 GRB GRACE_B 🕜	poststorm phase
🗆 2003-11-TP-01 Dst (min) = -422 CHA GRA GRB 🕜	MSIS20-01	GRACE_FO 🕜	
2005-01-TP-02 Dst (min) = -93 CHA GRA GRB 🕢	☑ MSISE00-01	🗆 SWA SWARM_A 🕜	
☑ 2005-01-TP-03 Dst (min.) = -66 GHA GRA GRB @	TIEGCM-Heelis-01 🚱		
☑ 2005-05-TP-02 Dst (min.) = -247 🕒 🕜	TIEGCM-Heelis-02 🕜		
☑ 2005-05-TP-03 Dst (min) = -113 🔐 🔐 🚱	TIEGCM-Weimer-01		
☑ 2005-06-TP-01 Dst (min) = -106 GRA GRB ②	TIEGCM-Weimer-02		
☑ 2005-07-TP-01 Dst (min.) = -92 (HA) ②	☑ WACCMX-Heelis-01 ②		
☑ 2005-08-TP-01 Dst (min) = -184 CHA GRA GRB ②	WAMIPE-01		
☑ 2005-09-TP-01 Dst (min) = -80 (HA) (AA) (AB) (2005-09-TP-01 (C))			1010/02/2007.50

Providing a List of Executable Papers

- CCMC recognizes the importance and benefit of using executable papers as one of the potential tools to increase reproducibility and transparency in the heliophysics community.
- e.g., Chou, M.-Y et al. (2023). Validation of ionospheric modeled TEC in the equatorial ionosphere during the 2013 March and 2021 November geomagnetic storms. Space Weather, 21, e2023SW003480. https://doi.org/10.1029/2023SW003480 (https://git.smce.nasa.gov/ccmcshare/1010292023sw003480)

CCMC Metadata Registry (CMR) https://kauai.ccmc.gsfc.nasa.gov/CMR

- Provides a hub for the community to search and obtain model outputs (real-time and historic)
- CCMC is the first group in the US to apply SPASE

• Simulated data and widgets/cygnets can be streamed from external sources by CCMC partners (**plug-and-play**)

User configurable display layouts

Ability to go back in time and save layouts

• Utilized for space weather monitoring, event studies, system science, forecaster training, education

Real-time data streams from Ionosphere/Thermosphere models: CTIPe 4.1, Ovation-Prime 2.3, Weimer 2005

Models recently added to RoR services:

- Multiscale Atmosphere Geospace Environment (MAGE) model suite version 0.75 (April 2024): a comprehensive geospace modeling framework that includes the coupled GAMERA magnetosphere, RCM ring current and ReMIX ionosphere electrostatics solver.
- Horizontal Wind Model 14 (March 2024): available to the community through RoR service. The ROR option of requesting a HWM14 model run allows users to request a longer time period compared to the Instant-Run (IR) option of the same model.

database into their own environment for further analysis.

- The CAMEL validation skill scores library is an official NASA open-source project (https://github.com/nasa/camel)
- Rastätter, L., Wiegand, C., Mullinix, R. E., & MacNeice, P. J. (2019). Comprehensive Assessment of Models and Events Using Library Tools (CAMEL) framework: Time series comparisons. Space Weather, 17, 845–860. https://doi.org/10.1029/2018SW002043

Time Period (TP) Database: linking storm events to model outputs

• TP database: systematically define geomagnetic storm ID (TPID) by the time of Dst min.

- Perform model simulations during the selected storm TPs using the CCMC RoR system (DTM, NRLMSIS, JB2008, CTIPe, WACCM-X, and TIE-GCM w/ several driver settings)
- All model simulation outputs are publicly available on the CCMC TP database (https://Kauai.ccmc.gsfc.nasa.gov/CMR/Timeinterval/viewAllTI)

TPID	<u>StartTime</u>	EndTime	<u>Max Kp</u>	<u>Min Dst</u>	GM Run Series	ITM Run Series
2001-03-TP-02	2001-03-29T00:00:00Z	2001-04-04T00:00:00Z	8.667	-387.0	• <u>SWMF-01 2001-03-TP-02 080623 2</u>	 JB2008-01 2001-03-TP-02 030224 IT 1 DTM2013-01 2001-03-TP-02 030324 IT 1 DTM2020-01 2001-03-TP-02 030324 IT 1 CTIPe-01 2001-03-TP-02 030324 IT 1 TIEGCM-Weimer-01 2001-03-TP-02 030224 IT 1 WACCMX-Heelis-01 2001-03-TP-02 030324 IT 1 TIEGCM-Heelis-01 2001-03-TP-02 030324 IT 1 TIEGCM-Heelis-02 2001-03-TP-02 030324 IT 1 TIEGCM-Weimer-02 2001-03-TP-02 030324 IT 1
<u>2001-04-TP-01</u>	2001-04-11T00:00:00Z	2001-04-14T00:00:00Z	8.333	-271.0		 DTM2020-01 2001-04-TP-01 021824 IT 1 DTM2013-01 2001-04-TP-01 021824 IT 1 IB2008-01 2001-04-TP-01 021824 IT 1 TIEGCM-Heelis-01 2001-04-TP-01 021824 IT 1 TIEGCM-Weimer-01 2001-04-TP-01 021824 IT 1 WACCMX-Heelis-01 2001-04-TP-01 021824 IT 1 CTIPe-01 2001-04-TP-01 021824 IT 7 TIEGCM-Heelis-02 2001-04-TP-01 021824 IT 1 TIEGCM-Weimer-02 2001-04-TP-01 021824 IT 1

			1000
Parameter to Score 📀	Skillscore Type 🕢	Skill Tables	
Debiased Density(g/cm^3) × -	Mean Observed-To-Computed (O/C) Density	Y -	

(https://webserver1.ccmc.gsfc.nasa.gov/camel/NeutralDensity/)

* Data used in the validation projects are available on the camel-data public git repository (https://git.smce.nasa.gov/ccmc-share/camel-data)

CAMEL Neutral Density Validation: Skillscore - Mean of Normalized Density Ratio

Density errors accumulate in orbit prediction. >1 underestimate Entire time series of density errors determines the resulting orbit error (Emmert+, 2016). 1 = best score

Any modelers can submit their model outputs to evaluate model performance.

(Space Physics Archive Search and Extract) metadata standards on models, simulation runs, and numerical and nonnumerical (e.g., image) outputs.

- Generating model metadata has been added as a part of the CCMC model onboarding process
- A process for collecting metadata for all Runs on Request has been established.
- Metadata for more than 100 models and model versions are currently stored in the CMR which is being used by the CCMC website model catalog.
- Metadata from about 2,000 Runs on Request from about 50 models are currently available in the CMR.
- Currently, we are working on a user-friendly database of the papers and research that used CCMC services; By linking RoR used in research to the publication, we ensure that future users can openly access previously performed research by other users and its details.