Ionosphere Coupling From Lower Drivers During the 2018-2019 Winter

Contact: sphillips@asu.edu

Sophie R. Phillips ¹, Katrina Bossert ¹, Komal Kumari ², Erich Becker ³, Nathaniel Frissell ⁴, Lynn Harvey ⁵ ⁽¹⁾ Arizona State University, ⁽²⁾ UCAR, ⁽³⁾ NWRA, ⁽⁴⁾ University of Scranton, ⁽⁵⁾LASP/CU Boulder

I. Introduction

- Processes in the lower atmosphere have a large influence on upper atmospheric dynamics
- Gravity waves (GWs) generate in the lower atmosphere, propagate upward, break, and then cause higher order GWs (Vadas 2003)
- Sudden Stratospheric Warmings disrupt the polar vortex, affecting GW upward propagation
- This work seeks to investigate local effects lower drivers in the stratosphere have on the upper ionosphere in the 2018-2019 winter; during which, there was a Sudden Stratospheric Warming

II. Data and Instruments

- Stratosphere (30-60km): Atmospheric Infrared Sounder (AIRS; Hoffman et al., 2013) - Ionosphere (220-350km): SuperDARN PGR/KOD – ground-based radar (54N,123W and 57 N,152 W, respectively) and Poker Flat Incoherent Scatter Radar (PFISR; 65N, 147.5W) - Coordinate Ranges: Alaska: 55-85N, 130-180W / Europe: 55-85N, 0-50E / NE Russia: 55-85N, 130-180E / Global: 55-85N, 180W-180E

Figure 1. Northern hemisphere showing 3 stratospheric coordinate regions (Alaska – Black, Europe – Red, NE Russia – Blue), PFISR (yellow star), SuperDARN PGR (Purple X), and Kodiak (Green X).

III. Characterizing Day-to-Day Activity

Figure 2. Stratospheric GW temperature perturbations over Alaska observed by AIRS in 4.3-micron channel for (a) December 22, 2018, and (b) January 3rd, 2019.

Ionospheric Waves:

- Figure 3 shows electron density perturbations the day after the stratospheric activity in Figure 2
- Densities were background subtracted (<40km, 2 hrs), lowpass filtered (>25km, 25m), and normalized
- Average MSTID amplitude on Dec 23 = $0.076 \ m^{-3}$
- Average MSTID amplitude on Jan 4 = $0.030m^{-3}$

Stratospheric Waves:

Shown in Figure 2, Dec 22 2018 has GWs present with horizontal wavelengths of up to 260km, vs no wave

activity on Jan 3rd 2019 Average T variance over Alaska on Dec 22nd= $0.107 K^2$

Average T Variance over Alaska on Jan 3rd = $0.014K^2$

Figure 3. Ionospheric electron density perturbations for (a) December 23, 2018 and (b) January 4th, 2019

- in February

Figure 4. Averaged 4-micron temperature perturbation variances for 2018-2019 winter season, over 4 different regions, (a) Global Polar Vortex, (b) Europe, (c) NE Russia, and (d) Alaska.

before SSW, then decrease in thermospheric GW activity during SSW Peak in GWs in mid-February

Central Alaska using the Poker Flat Incoherent Scatter Radar. Journal of Geophysical Research: Space Physics, **123**, 5717-5737. <u>https://doi.org/10.1029/2017JA024876</u>