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I. Introduction
• Processes in the lower atmosphere have a large influence on upper atmospheric dynamics
• Gravity waves (GWs) generate in the lower atmosphere, propagate upward, break, and then 

cause higher order GWs (Vadas 2003) 
• Sudden Stratospheric Warmings disrupt the polar vortex, affecting GW upward propagation
• This work seeks to investigate local effects lower drivers in the stratosphere have on the upper 

ionosphere in the 2018-2019 winter; during which, there was a Sudden Stratospheric Warming
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- Stratosphere (30-60km): Atmospheric Infrared 
Sounder (AIRS; Hoffman et al., 2013) 
- Ionosphere (220-350km): SuperDARN 
PGR/KOD – ground-based radar (54N,123W and 
57  N,152 W, respectively) and Poker Flat 
Incoherent Scatter Radar (PFISR; 65N, 147.5W) 
- Coordinate Ranges: Alaska: 55-85N, 130-180W 
/ Europe: 55-85N, 0-50E / NE Russia: 55-85N, 130-
180E / Global: 55-85N, 180W-180E
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Figure 3. Ionospheric electron density perturbations for (a) December 23, 2018 and (b) 
January 4th, 2019

Figure 2. Stratospheric GW temperature perturbations over Alaska observed by AIRS in 
4.3-micron channel for (a) December 22, 2018, and (b) January 3rd, 2019.
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Figure 1. Northern hemisphere showing 3 stratospheric coordinate 
regions (Alaska – Black, Europe – Red, NE Russia – Blue), PFISR 
(yellow star), SuperDARN PGR (Purple X), and Kodiak (Green X).
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Stratospheric Waves:
• Shown in Figure 2, Dec 

22 2018 has GWs present 
with horizontal 
wavelengths of up to 
260km, vs no wave 
activity on Jan 3rd 2019

• Average T variance over 
Alaska on Dec 22nd= 
0.107 𝐾! 

• Average T Variance over 
Alaska on Jan 3rd = 
0.014𝐾! 

Ionospheric Waves: 
• Figure 3 shows electron 

density perturbations the 
day after the stratospheric 
activity in Figure 2

• Densities were background 
subtracted (<40km, 2 hrs), 
lowpass filtered (>25km, 
25m), and normalized

• Average MSTID amplitude 
on Dec 23 = 0.076 𝑚"# 

• Average MSTID amplitude 
on Jan 4 = 0.030𝑚"# 

• Stratospheric, thermospheric, ionospheric wave activity 
were all linked with SSW onset in late Dec to early Jan

• Ionospheric MSTID amplitude peaks generally follow 
modelled thermosphere GW activity peaks

• Polar vortex strength and local zonal wind speeds appear 
to drive long term trends in ionospheric activity

• Shorter period peaks in MSTID amplitudes appear to be 
driven by changes in planetary wave amplitudes, and 
linked to regional stratospheric winds over Alaska

• Figure 4 shows day-to-day stratosphere temperature 
variances averaged over each regional range 

• Peak shown in December before SSW, then much larger peak 
in February

• Local differences are observed in each unique region

CC=0.54

Figure 6. MSTID Amplitudes vs NAM Index, used to 
represent Polar Vortex strength.
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Figure 4. Averaged 4-micron temperature perturbation variances for 2018-2019 
winter season, over 4 different regions, (a) Global Polar Vortex, (b) Europe, (c) 
NE Russia, and (d) Alaska.  
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• Figure 5 shows 
ionospheric (a) ISR 
daily averaged 
MSTID amplitudes 
and (b) Kodiak 
radar MSTID index 

• Both show recover 
after SSW, but 
Kodiak MSTID 
index in Fig 5b 
does not decrease 
during SSW
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Figure 7. MSTID Amplitudes vs Local Wind speeds (Zonal and 
magnitude of Meridional) over Alaska (55-75N, 180-130W).

VI. Model Validation

Figure 9. Model results showing 2018-2019 GW (a) wind 
perturbations and (b) temperature perturbations 

• Fig 9 shows 
HIAMCM model 
– increase in 
thermospheric 
GW activity 
before SSW, 
then decrease in 
thermospheric 
GW activity 
during SSW

• Peak in GWs in 
mid-February 

Figure 8. MSTID Amplitudes vs Planetary Wave 
Amplitude Gradients.
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Figure 5. 4-day averaged ionospheric (a) MSTID amplitude 
from PFISR, (b) MSTID index from nearby SuperDARN radars

CC= 0.21
CC= 0.64

(b)

https://doi.org/10.1029/2012JD018658
https://urldefense.com/v3/__https:/doi.org/10.1029/2017JA024876__;!!IKRxdwAv5BmarQ!fE_pEHj7QVRPvz9QlWXcl-JxBp6-YYDbPePJ26O7azyeQFxN2nn7zfoD2bhwaECZnQMKBZnqnaWadUKk0wfVP-w$

