Investigation of Thermosphere Mass Density Perturbations Ascribed by CHAMP Observations

Anton Buynovskiy¹, Jeffrey P. Thayer¹,², Eric K. Sutton²
¹CU Boulder/Aerospace Engineering Science, ²CU Boulder/SWxTREC; Corresponding Author: anton.buynovskiy@colorado.edu

Motivation

• CHAMP accelerometer has provided a decade’s worth of drag acceleration data, yet in-track wind influences on acceleration are often neglected
• A new ascending-descending accelerometer (ADA) technique has been developed and demonstrated that the in-track wind perturbations can be extracted and analyzed

This poster applies the ADA technique to CHAMP accelerometer data in the high-latitude region to reveal potential in-track wind contributions

General Accelerometer

• Highly sensitive accelerometers, such as STAR on the CHAMP mission, have been used to extract thermosphere properties such as mass density and cross-track winds by relating the acceleration due to drag to density and wind [1] as shown below

\[a_d = -\frac{\rho}{2m} C_d |v|^2 \rho \]

where \(a_d \) is the drag acceleration, \(C_d \) is the drag coefficient, \(v \) is the reference area, \(\rho \) is the molecular mass, \(\rho \) is the thermosphere mass density, \(v \) is the relative velocity of the atmosphere with respect to the satellite, \(v_r \) is the spacecraft velocity, \(v_{ref} \) is the co-rotating atmospheric wind, and \(\rho_{ref} \) is the thermospheric wind density.

• An ambiguity between mass density and winds makes it difficult to distinguish mass density and wind perturbations
• This is typically resolved by either neglecting winds or modeling the winds and absorbing the wind effect as a contributing error

Ascending-Descending Accelerometry (ADA)

ADA splits satellite orbits into ascending and descending passes to take advantage of the fact that while mass density is scalar, winds have a directionality with respect to the relative satellite motion, making it possible to discern whether acceleration perturbations are due to mass density or wind changes. See Buynovskiy et al. (2024) for a detailed procedure.

- Conditions
 1. Satellite must ascend and descend through the same local time with similar space environment conditions
 2. Orbit must be near polar to mitigate in-track contributions from large co-rotating atmospheric and zonal winds
 3. Target region should be a persistent, recurring phenomenon

- Interpretation
 a) Density-dominated: acceleration perturbations due to density are much greater than those due to winds
 • Wind perturbations are considered small, so ascending and descending orbits yield similar acceleration perturbations
 • The threshold to determine density dominance is shown in Eq. 2a accompanied by density perturbation contributions in Eq. 2b
 b) Wind-dominated: acceleration perturbations due to winds are much greater than those due to density
 • Density is considered constant, so the wind perturbations yield an inverse behavior between ascending and descending orbits
 • The threshold to determine wind dominance is shown in Eq. 3a accompanied by wind perturbation contributions in Eq. 3b

Results

- Figure 2: Averaged ascending relative acceleration data in the north pole organized in mlat and MLT
- Figure 3: Averaged descending relative acceleration data in the north pole organized in mlat and MLT
- Figure 4: Percent contribution of wind and density perturbations in the north pole organized in mlat and MLT
- Figure 5: Averaged derived in-track wind perturbations (positive = equatorward, negative = poleward)

Data Description

- CHAMP in-track accelerometer data from 2003-2006 is used
- The in-track drag accelerometer data is normalized to a constant attitude and put into a relative acceleration format
- The relative accelerations are split into ascending (Fig. 1a) and descending (Fig. 1b) passes, for a total of 8 ADA datasets
- CHAMP’s precession rate allows the satellite to ascend a local time and descend the same local time approximately a year later
- To remove in-track contributions from co-rotating and zonal winds at high latitudes, data with the meridional component <95% are not considered
- Data where Kp > 3 is removed
- Relative accelerations are organized into 1-hour magnetic local time (MLT) and 2° magnetic latitude (mlat) bins

Acknowledgements

This research was supported by the National Science Foundation Graduate Research Fellowship under Grant DGE-2049694, the National Science Foundation Collaborative Research Center Cubes: Heliophysicsenabled Multifunctional Experiment (CRAVEDMEX) at the University of Colorado Boulder, and the USDA Heliophysics Division Space Weather Science Application Initiative under Grant 80NSSC19K12554.