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1. INTRODUCTION

3. MODEL DESCRIPTION

The Artificial Periodic Inhomogeneities (API) are electron plasma density structures e The model proposed is based on the low-latitude ionosphere model developed by |. This set of equations has been solved for the following ion species O,", NO*, O,
created by heating the ionosphere using powerful high-frequency waves emitted Bailey and Balan, incorporating the effects of the heating wave and the formation O4", and O, using the Mitra-Rowe 1on chemical scheme, which includes
from ground-based facilities. These irregularities has been detected across the D, E mechanism of the API structures. The resulting equations, which are reduced to an electron attachment reactions. Furthermore, the required computational tools
and F regions, and the backscatter signals has been used to study a broad range of altitude-dependent behavior, can be written as shown here. and initial parameters for the simulation are listed in Table 2.
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Many zzln'?lytlcaéI lat|zi]|o|ro><|ma’uons hfax\%l ICIc)>eten on, - sroduction and loss terms, respectively I P used. Howgver, this !SJUStIﬁed
prc.)pose © mO e © OCCUW@OC@ © - but E + v: ) (njvj) — Pj _ Ljnj —or the momentum equatiOﬂ we assume et | E(z): full wave solution of Stoke's equation (see by the rapld formation of API
unified model is still absent. In this work we focus S 1 ! ertial el d th | ¢ Lundborg, 1986) irregularities ( < 1 seQ),
- . 200k i _ | e Inertialess particles, an e pressure term .
on the fOl.lO\X/Ing aSpeCtS. 1 U M1 q]E o ;Vzp] Fp,] : : - Savitzky-Golay filter for n* species. requiring Onl'y a moderate
1w iV J IS equal to pi=kn;T;. In the energy equation, COBIBEERenal | ey Y s e | — aumber of iterations. In order
: : : : - Finite differences discretization for fluid equations. .
1) Provide a brief review of the formation — i oT. 2 th ds to the th l tools , _ . .
. L V. (ke V.T.) = Qup+Q.i+Q € Ke COINresponas O e erma - 2nd order Runge-Kutta solver for fluid equations. to Collapse the time evolution
mechanisms of API structures for each of the E.] — Ot 3nkp L erEe en T ei T W heat . . .
onosphere regions t0okm| Vo = \ conductivity tensor, and Qneat Is the heating . of the APl processes, the
' A , Q A AN/ .
: 1> |E (z)|2w Here n is the rate roduced bv the um wave. The yarameters Az —22m, At — 8ys, w — 4.4MHz electron and |ION
2) Present a 1D fluid model (Hysell et al., 2023) D-region § ot = ZO =, (2)ni(2) eney P Y pump . I femoerature equations
. | ,l o olle C refracti ' ' ' '
Capable of reprOdUC|ng the occurrence of API /,:},j'/:}' > i b efraction hlghllghted terms in red, along with the net Table 2: Required parameters and computational tools
across the layers of the ionosphere. b / ne=) 4 zero current and quasineutrality condition, | are advanced 8 us whereas the ion continuity equations are advanced 200 times
3) Analyse the electron density structures —— e ; defined the proposed model for the | faster - 1.6 ms per iteration. This choice preserves a distinct separation of
obtained with this simulation. Figure 1: Conceptual diagram of a typical APl experiment 2T Z 4V - (njvy) = formation of APl irregularities. timescales while permitting practical and expedient simulation runs (Hysell, 2023).
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e D-region: At these altitudes, the negative ion —potiez || — | | | | — . | R | - | o T
chemistry has been reported as the the e The plasma temperature and density perturbations induced by the HF pump wave | — no+ | — T | —anl | | |+ conT
formation mechanism of APl structure. Local =1 |™ " induced miniscule signals difficult to detect and visualize. An implementation of a more |— & | 1 . | il
heating of the electron gas in the nodes of the sensitive diagnhostic match filter was made by correlating the electron density with the 1o o o o
powerful standing HF wave increases the rate of - HF pump amplitude Eo, Te and Ti. The resulting correlations can be noisy, but the peaks —o | | . - \
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attachment of electrons to oxygen molecules, are used to determine the occurrence of API. 160 | ,r' 6o | 160 | ‘l.\ e
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attachment are listed in Table 1 - curve between ne and Eo (rigth panel, black curve) exhibits several negatively & / |
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Table : Principal electron attachment reactions 107100 107 160 0 1000 2000 30° 108 T irregularities simulated with the proposed model. As soon as the simulation begins (Qneat | ) | | 4
The right panel in Figure 2 illustrates the >0), several peaks with varying correlation values appear and persist until the heater is - 2o 5 - / 5
population of electrons lost due to the second o e o e o e et tomartire turned off (indicated by the black vertical dashed line). After this point (Qneat =0), the - | b Lo
attachment process, as detailed in Table 1, across ~ Profies Theright panel shows the electron population lost by intensity of the correlation starts to decay, suggesting that there is no electron density | | | | | 1
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profiles. It is evident that the form of the rate coefficients significantly influences the
: ey . Cg Figure 4: Results of numerical simulation at timestep 400. Left panel: Number density of electrons (black), NO* (red), Ox" ions (green),
eleCtron deﬂSIty VarlathnS. at l-O\X/er eleCtrOn tem pel’atureS, these VarlathnS are more 6% O*(magenta), O4*(orange), and Oz (blue) versus altitude. Center left panel: Electron (black) and ion (red) temperature. Center right
- 4 ! . ' panel: Real part of the index of refraction (green), imaginary part of the index of refraction x250 (red), and normalized HF pump mode
prOnOunced, Whereas at hlgher temperatures' the variations are reduced' : ] = ;TE:EZ::: amplitude envelope (black). Right panel: Correlation of electron density (black), electron temperature (red), andion temperature
; | I (green) with the HF pump mode envelope.
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continuity and momentum equations for the ion species and massless electrons, £ | S i , , ,
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diffusion 9 =\ e p e "1\ V2 22D . sufficient to reproduce the formation of API irregularities. While we
T2 Noe = 2 (;(; -+ ) 2 1o min Figure 5: The left panel shows the RTI plot of the correlation between electron density and HF wave amplitude. The right panel shows the : Co : C
| decay rate analysis of the of the main electron density perturbations after the heater is turned off (black triangles), in addition with the understand the mechanisms dflVlﬂg these perturbatIOﬂS. pl’edlCtlﬂg the
The information provided here iS relevant fOI’ the modelling because the relaxation analytical decay rate approximation for ambipolar (red, single ion O>") and ambipolar (blue, two ions: O,*, NO"), exaCt location Of AP' fOrmatiOﬂ iS Challenging due tO the Complexity Of
of the API irregularities is expected to decay due to the diffusion of particle species K other physical interactions.
when the heater is turned off, an serve as a benchmark in accordance with the
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