A Theory for Modeling Partially Magnetized Electrons under Influence of External Electric Field in Geophysical Applications using Fluid Coefficients Corresponding to Non-magnetized Plasma

Zaid Pervez, Reza Janalizadeh, and Victor P. Pasko Communications and Space Sciences Laboratory, The Pennsylvania State University, University Park, PA 16802, USA (zpervez@psu.edu; reza.j@psu.edu; vpasko@psu.edu)

1. Abstract

In the presence of an external electric field and magnetic field, electron transport and rate coefficients vary as a function of the reduced electric field, reduced electron gyrofrequency, and the angle between electric field and magnetic field vectors [Starikovskiy et al., Phys. Rev. E, 103, 063201, 2021; Janalizadeh and Pasko, J. Geophys. Res.: Space Phys., 128, e2022JA031009, 2023]. We present a theory based on solution of the Boltzmann equation in non-magnetized plasma to obtain electron transport and rate coefficients in magnetized plasma by using an effective electric field [Janalizadeh et al., Plasma Sources Sci. Technol., DOI:10.1088/1361-6595/acdaf1, 2023]. This reduces the original problem with the three input parameters mentioned above to an equivalent problem with single input parameter, the effective reduced electric field E_{off}. Comparisons between exact coeffcients obtained via BOLSIG+ [Hagelaar and Pitchford, Plasma Sources Sci. Technol., 14, 722-733, 2005] and approximate coeffcients of the proposed method are presented for pure carbon dioxide, air, and a mixture of molecular hydrogen and atomic helium representing the giant gas planets of the solar system [Janalizadeh et al., 2023]. A study of the convergence criteria of the fixed-point iteration method, which we use to solve for E_{off} , shows that the method always converges to a unique solution, provided a judicious choice of the initial value of the electric field for fixed-point iterations. In particular, a simple choice that ensures convergence is the initial value equal to the applied field. The modeling framework that we report in this work is applicable to a broad range of natural phenomena and gas mixtures including electrical gas discharges in the atmospheres of the Earth and Jupiter (i.e., sprites and elves).

2. Motivation

Characterizing the influence of an external magnetic field on weakly ionized plasma is of significant interest for both space physics and laboratory applications, such as sprite streamers assoicated with atmospheric dischargers, and laboratory streamer discharges.

Figure 1. Spatial distributions of the electric field E (upper half panels) and electron density n_a (lower half panels) for a positive streamer in the absence (left) and presence (right) of magnetic field [Starikovskiy et al., 2021].

Figure 2. Optical emmision intensity of a sprite streamer in Jupiter's atmosphere in units of Rayleigh (R) for Lyman and Werner band systems of H₂ in the absence (B = 0 G) and presence (B = 5 G) of magnetic field [Janalizadeh and Pasko, 2023].

The presence of a magnetic field results in streamer sharpening, and brighter optical emissions.

The isotropic part of the electron velocity distribution function (EVDF), $f_{0B}(v)$, in the two-term approximation to the Boltzmann equation, satisfies the differential equation:

It can be shown [Janalizadeh et al., 2023] that minimizing this residual results in

3. Model Formulation

Transcendental Method:

$$\frac{q_{\rm e}}{m_{\rm e}}\right)^2 \frac{1}{v^2} \frac{\partial}{\partial v} \left[\frac{v^2}{\nu_{\rm m}} \left(\frac{E_{\perp}^2}{1 + \beta_{\rm H}^2} + E_{\parallel}^2 \right) \frac{\partial f_{0B}}{\partial v} \right] + \mathcal{C}(f_{0B}) = 0$$

where $\beta_{\rm H} = \omega_{\rm co}/\nu_{\rm m}(\varepsilon)$ is the Hall parameter. We wish to find the electric field E_{off} and corresponding EVDF f_0 in the absence of a magnetic field which minimizes the residual:

$$(v) = \frac{1}{3} \left(\frac{q_{\rm e}}{m_{\rm e}}\right)^2 \frac{1}{v^2} \frac{\partial}{\partial v} \left[\frac{v^2}{\nu_{\rm m}} \left(\frac{E_{\perp}^2}{1+\beta_{\rm H}^2} + E_{\parallel}^2 - E_{\rm eff}^2\right) \frac{\partial f_0}{\partial v}\right]$$

$$E_{\rm eff}^2 = E_{\parallel}^2 + \frac{E_{\perp}^2}{1 + \beta_{\rm eff}^2(E_{\rm eff})}$$

Approximate Transcendental Method:

Additionally, it can be shown [Janalizadeh et al., 2023] that when $\nu_{\rm m}(\varepsilon)$ is approximately constant and $\beta_{\rm H}^2(\varepsilon) >> 1$, $E_{\rm eff}$ takes the same exact form as shown above, only with an effective Hall parameter $\beta_{eff} = \omega_{ce}^{2}/\nu_{m}^{2}(E_{eff}^{2})$, where $\nu_{m}(E_{eff})$ is the momentum transfer collision frequency averaged over the electron energy distribution. This resembles the electric field experienced by a single electron [Starikovskiy et al., 2021]:

$$E_{\rm eff}^2 = E_{\parallel}^2 + \frac{E_{\perp}^2}{1 + \beta_{\rm H}^2(\varepsilon)}$$

The introduced method proceeds in two steps: 1. Calculate E_{eff} for a given $(E/N, \omega_{ce}/N, \angle E, B)$ using above equation.

2. Calculate electron transport and rate coefficients using

If we define $x \equiv E_{off}/N$ and

then x is fixed point of the function $\phi(x)$, i.e., $x = \phi(x)$. It can be shown that a solution x always exists [Burden and Faires, Numerical Analysis, 2005, Theorem 2.2]. Additionally, if $d\phi/dx$ exists in the interval (0, E/N) and a positive constant k < 1 exists with

then the solution x is unique and the fixed-point iteration defined by

always converges to this unique solution.

4. Numerical Method

$$\phi(x) \equiv \frac{1}{N} \left[E_{\parallel}^2 + \frac{E_{\perp}^2}{1 + \beta_{\text{eff}}^2(x)} \right]^{1/2}$$

 $|d\phi/dx| \le k$, for all $x \in (0, E/N)$,

 $x_{n+1} = \phi(x_n)$, where n = 0, 1, 2, ...

• Convergence is always achieved provided x_0 is chosen to lie towards the upper bound of the [0, E/N] interval. Similar analysis for CO₂ and a (88% H₂, 12% He) mixture leads to the same conclusion.

PennState

Figure 5. Percentage error of approximate transcendental method solutions for ionization frequency ν_{i} .

6. Conclusions

• The proposed modeling methodology leads to plasma fluid coefficients that are in satisfactory agreement with BOLSIG+'s exact calculations for air, a 88% H₂ and 12% He mixture (resembling the giant gas planets of the solar system), and pure CO_2 . • The numerical method always converges to a unique solution provided the initial value is chosen as the applied electric field.

• The proposed method provides satisfactory agreement with exact solutions for major electron transport and rate coefficients, with small deviations where $\beta_{eff} >> 1$.

• Proposed method is of interest in the partially magnetized $(\beta_{eff} \sim 1)$ regime, since when $\beta_{eff} \ll 1$, we have $E_{off} \sim E$, and conversely when $\beta_{eff} >> 1$, we have $E_{eff} \sim E_{||}$.