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Sprites are large streamer trees that propagate down from the 

ionospheric boundary. Thought to be scaled versions of streamer 

coronae, they are thus of wider interest to the study of lightning and 

spark discharges. Fractal modeling is a technique to simulate the 

large-scale behavior of dielectric breakdown, which has seen some 

success at simulating sprites. This poster presents work to improve 

upon existing fractal models and an analysis of the results using 

multifractal analysis.
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Figure 7 shows the Rényi Spectra of several fractal sets. Most of the 
curves were estimated using the sandbox method. To get a sense of 
the accuracy of the method, the two scale Cantor set, the von Koch 
curve, and the Sierpinski triangle spectra were plotted. The two-scale 
Cantor set has good correlation with the exact (theoretical curve) at 
least for positive values of q. The error might be the result of some 
random noise in the data. The von Koch curve should be a �lat line at 
1.26 and the Sierpinski triangle curve should be a �lat line at 1.58. The 
latter especially is underestimated, again especially for negative 
values of q, but at least they are ordered correctly relative to one 
another. Thus, this method is producing approximately qualitatively 
accurate 
With the accuracy of the estimation method assessed, we can consider 
the spectra of the sprites. Sprite 1 (�igures 1a/1c) has a fairly nice (S-
shaped and strictly decreasing) spectrum indicative of 

multifractalism. Sprite 2 (�igures 1b/1d) is less nice, but also seems to 

indicate multifractalism. The spectrum of a simulated streamer tree 

(�igure 3b) is also nice and indicates multifractal. It is encouraging 

that the Rényi spectrum of the simulated streamer tree is in the same 

range as the real sprites. Perhaps the changes mentioned in the fractal 

simulation  

Monofractal and multifractal analysis can be very messy and inexact. 

However, if applied very carefully multifractal analysis provides much 

richer information than monofractal analysis, and is thus more 

appropriate to use when validating fractal models of sprites, which 

are, as we have shown, multifractal objects.
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Sprites can be dif�icult to model since they occur over a large range of 
scales. One approach, fractal modeling, eschews the �ine scale 
mechanics in order to focus on the large scale dynamics (Niemeyer). 
The discharge tree is modeled as a series of links between grid points, 
as depicted in �igure 3a (adapted from Pakso 2000). A three-
dimensional grid (�igure 3b) is usually preferable (Pasko 2002, 
Riousset 2007). At each stage of simulation, a list of all possible links 
between a point on the tree and a neighboring point off the tree is 
compiled. This has been depicted for four selected points in �igure 3a. 
Each link is assigned a weight based on the voltage across it, and one is 
randomly selected and added to the tree. The electric potential is then 
recalculated at each grid point using the successive over-relaxation 
method. Simulation continues until the border is reached or the �ield is 
so reduced that no more links can be added to the tree. Figure 3b is a 
streamer tree modeled in this way. A few more modi�ications remain 
to be added to the code before it will be a true simulation of sprites. 
Namely realistic space charge distributions and an altitude dependent 
critical electric �ield. Red links were added �irst, blue last.
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Figures 1a and 1b are high speed images of sprites, a form of high 
altitude lightning. Figures 1c and 1d show the same images �iltered 
such that all pixels are either black or white, based upon a pixel 
brightness threshold. This method looses a lot of detail, but it is okay 
for basic analysis. We will be investigating the effects of other image 
processing techniques in the future. 

Sprites

Results and conclusion

Figure 2 depicts the von Koch Curve, a famous examples of a man-

made fractal. Even at the smallest scales, fractals contain in�inite detail 

and are never smooth. The von Koch curve is generated iteratively, it 

begins life as a unit line segment, but an in�inite series of 

perturbations transform it into a beautiful craggy curve. Since each 

perturbation makes the curve slightly longer, the end results is an 

in�initely long curve contained in a �inite space. Topologically, the von 

Koch curve is still a line, however in another sense it has transcended 

its line-hood, but not yet achieved plane-hood. This can be stated more 

precisely in the language of fractal dimension. 

Fractals

Fractal Modeling (Sprite Simulation Technique)

Figure 4 depicts the �irst six iterations of the arrow head method of 
generating the Sierpinski triangle. You may be familir with other 
methods of generating this fractal, but this is the simplest to code and 
most apt for explaining the concept of fractal dimension. Compare the 
Sierpinki triangle to the von Koch curve. Both are in�initely long lines 
(at least after in�inite iterations), but one might say the Sierpinki 
triangle is "denser", "crinklier", or "more plane-�illing". Let us talk 
instead of the fractal dimension. For fractals like these, where we 
know the construction technique, the fractal dimension, D,  is given by

For the Sierpinski Triangle D = -log(3)/log(1/2)~1.58, for the von 
Koch curve D = -log(4)/log(1/3) ~ 1.26, which con�irms our intuition 
about the relative "crinkliness" of the two curves. This method does 
not work for naturally occurring fractals such as sprites. Fortunately a 
veritable menagerie of methods have been invented to estimate their 
fractal dimension. Variation in the results of these methods leads us 
directly to the study of multifractals (Kisner)

Fractal Dimension

As previously stated, there are many ways to estimate fractal 

dimension. Many methods differ in the way they are sensitive to the 

distribution of "mass" across the fractal. Such de�initions can be 

considered special instances of a generalized fractal dimension Dq 

which is a function of the parameter q. For monofractals, such as the 

Sierpinski triangle or the von Koch curve, Dq should be single valued. 

For multifractals such as the two-scale Cantor set, it should be a 

strictly decreasing "S-curve", as depicted in �igure 6. The simplest 

method of calculation is an extension of the box counting method, in 

which a grid is placed over the fractal. The boxes are of size r and Pi is 

the fraction of the number of points that fall within the i-th box. Then, 

the 

When Dq is plotted against q it is called the generalized dimension 

spectrum or Rényi dimension spectrum (Theiler). In practice, the box 

counting method is not very reliable, especially for negative values of 

q, because boxes that barely intersect with the fractal will be 
overcounted (Lopes). It was used to calculate the theoretical (exact) 
Rényi dimension spectrum for the two-scale Cantor set shown in 
�igure 7. However, all the other curves used a more reliable albeit 
imperfect method called the sandbox method (Tél). The details of the 
sandbox method are beyond this presentation, but it suf�ices to say it 
uses  
The Rényi dimension spectrum can be transformed into the singularity 
spectrum f(α), which is generally considered to be preferable, because 
it has �inite support and is more intuitive. f(α) is the fractal dimension 
of the distrubtion of subsets with with local dimension α. However, the 
transformation itself can introduce error. Chhabra proposed a direct 
method for calculating f(α), but it works poorly for negative values of 
q. Since I haven't found a reliable method of calculating it, I have 
chosen to use the Rényi dimension spectrum for this poster since it is 
more than suf�icient for this purpose. 

The two-scale Cantor set is a simple example of a multifractal, which 
may be de�ined as a fractal with a nonuniform "mass" distribution. 
Figure 5a shows the "plinko" method of generating it. Figure 5b shows 
the �inal "mass" distribution. As a multifractal, it can't be characterized 
by a single fractal dimension, but rather by a generalized fractal 
dimension spectrum (Halsey).

Multifractals
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