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Introduction

This poster presents correlation analysis of frequency of occurrences of Coronal

Mass Ejections (CMEs) and a measure of geomagnetic storms, namely, the Distur-

bance storm-time (Dst) Index. A multi-scale cross-spectral analysis technique has

been employed to investigate the relationship between frequency of occurrences

of CMEs and the strength of Dst Index. A quantitative measure of this relationship

is estimated using coherence and phase (lead/lag) of the cross spectra between

frequency occurrences of CMEs and the strength of the Dst Index with a measure

of statistical significance. The coherence and phase of the two time series provide

information that could be used to develop a system which can be utilized to fore-

cast space weather.

Database

Fig. 1 displays long-term observations of the sunspot numbers, the frequency of

occurrences of CMEs (NASA SOHO LASCO), and the Dst index. The top panel

shows a large negative excursion of the Dst index for an increase in CME oc-

currence indicating a cause-effect relationship. Along with the bottom panel, the

co-variation of the three signals agrees well with the well-known 11-year sunspot

cycle periodicity. We will be using a section of this data for multi-scale spectral

analysis in this poster.

Figure 1. Time series of Dst index, frequency of occurrence of CMEs, and Sunspot Numbers.

Noise Characterization

The purpose of estimating the background noise is to provide a measure of sta-

tistical significance of our spectral power calculations. We model the background

noise yn of each signal as red noise described by

yn = A [αAR1 yn−1 + zn]
where αAR1 is the lag-1 autocorrelation coefficient, A is the noise amplitude and

zn is a stochastic variable drawn from a normalized Gaussian distribution. We fit

the theoretical red noise power spectrum given by

Pk = A2 (1 − α2
AR1)

1 + α2
AR1 − αAR1 cos(2πk/N)

to the power spectrum of each signal, excluding frequencies with clear enhanced

power.

Fig. 2 shows the power spectrum and best fit red noise spectra for the daily

sunspot counts, Dst index and the daily CME counts. The dashed red line shows

the 3σ (99.7%) significance level [2].
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b) Daily-averaged Dst Index (1963-2022)

c) Daily-Binned CME Counts (1993-2022)
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Figure 2. Power spectra of (a) daily sunspot counts, (b) the Dst index and (c) the daily number of

CME events. The solid red curve shows the fitted red noise spectrum with fitted parameters (a)

αAR1 = 0.85 and A = 0.412, (b) αAR1 = 0.59 and A = 0.887 and (a) αAR1 = 0.34 and A = 0.753.

ContinuousWavelet Transform

The Continuous Wavelet Transform (CWT) is a multi-scale spectral analysis tech-

nique employed in our investigation. Mathematically, this technique can be de-

scribed as

Xw(s, k) = 1√
s

∫ ∞

−∞
x(t)Ψ

(
t − k

s

)
dt (1)

The parameter s in equation 1 is a scaling parameter whose use is to stretch and

compress the wavelet function Eqn. 2 to find variations within the signal. The pa-

rameter k is a translation parameterwhose use is to propagate thewavelet function

across a signal.

The Morlet wavelet function Eqn. 2 is employed in the analysis of this work [2].

Ψ = k0e
iωte−t2/2 (2)

When we apply the wavelet analysis technique on the Sunspot signal (Fig. 3), the

well-known 11 year periodicity is reproduced.

Figure 3. Wavelet Transform of Sunspot numbers

Cross-Wavelet Transform

TheWavelet Coherence can be used to identify both frequency and time intervals

when time series were related but do not necessarily have high power.

R(s, k) = 2|XXY (s, k)|2

|XX(s, k)|4 + |XY (s, k)|4
(3)

The Coherence plot give us information about the phase and lag between two time

series given by:

φn = tan−1
(

=(XXY )
<X (XY )

)
where −π ≥ φn ≤ π. φn > 0, X leads Y [1, 3].

Fig. 4 shows a segment (July 2015) of the Dst index and frequency of occurrence

of the CME data in Figure 1. The top and bottom panels of Fig. 4 present the

coherence and phase of the cross-wavelet power spectra applied on the segment

(July 2015) of the Dst index and the CMEs data. In regions of high coherence

(close to about 1, top on Fig. 4), the phase difference (bottom panel, Fig. 4) falls

within the ranges of about −π/2 to π/2 (within a lead/lag time of about a week).

These are coarse estimates of lead/lag relationship of the Dst index and frequency

of occurrence of the CMEs.

Figure 4. Coherence and Phase plots of Dst index and CME data

Conclusion

We have conducted a preliminary analysis of the relationship between the oc-

currence of frequency of CMEs and the Dst index using phase and coherence of

multi-scale power spectra of the two parameters. In regions of high coherence, the

phase difference between the occurrence of frequency of coronal mass ejections

and disturbance storm time index falls within a lead/lag time of about by a week.

Following this preliminary study, further extensive data analysis will be performed

to develop a system which can be useful for space weather forecasting.
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