

Climatology of mesospheric and lower thermospheric diurnal tides over Jicamarca (12°S, 77°W): Observations and simulations

J. Suclupe¹, J. L. Chau¹, J. F. Conte¹, M. Milla², N. M. Pedatella³, K. Kuyeng⁴

¹ Leibniz Institute of Atmospheric Physics at Rostock University, Kühlungsborn, Germany.
 ² Sección de Electricidad y Electrónica, Pontificia Universidad Católica del Perú, Lima – Peru.
 ³ High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA.
 ⁴ Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima, Peru.

Introduction

 The Mesosphere and Lower Thermosphere is the transition region (80-110 km) between our atmosphere and the geospace.
 The diurnal tides (T = 24 h) are the most dominant MLT large-scale oscillation over

Jicamarca (12°S, 77°W). Diurnal tide could be migrating (DW1) and non-migrating (e.g., DW2 and DE3).

Motivation

A single radar only can measure total tides (it can not separate migrating and non-migrating), but it is known that the non-migrating contribution is significant.
 The diurnal tide, as it propagates vertically, could be modulated by different oscillations, which is important to understand the coupling between atmospheric layers.

Objectives

- 1. Obtain the climatology of the total diurnal tide over Jicamarca.
- Infer the possible non-migrating contribution to the total diurnal tide.
- 3. Report the main periods that modulate the total diurnal tide.

R1a. Observational maxima of the total tide: Zonal: August-September Meridional: August-September and April-May R1b. Dominant wavenumbers: Zonal: DW1 & DE3 Meridional: DW1 & DW2	R2. Total tide phase profiles are more separated from the migrating DW1 in the component: Zonal: From June to September Meridional: From November to July $\varphi_{tot} = \operatorname{atan} \frac{\operatorname{Asin}(\alpha) + \operatorname{Bsin}(\beta)}{\operatorname{Acos}(\alpha) + \operatorname{Bcos}(\beta)}$	R3. Observations and Model show modulating signatures from 5-80 days. $x(t) = m(t)_{tot} \cos(\omega t + \varphi_{tot})$ $m(t) = A_m \cos(\omega_m t + \varphi_m)$
Discussion		
 D1a. The observed shifted and asymmetrical maxima could be due to the non-migrating contributions. D1b. Although the model shows amplitudes twice as small as the observations. We can use the phase profiles as references. 	D2. We can infer that: Zonal: DE3 is most significant from June to September, Meridional: DW2 is most significant from Nov. to July. Good agreement with satellite observations [2,3].	 D3. Modulations are most likely due to: Planetary Waves (5-25 days), Large-scale tropospheric oscillations (>25 days): e.g. Madden Julian Oscillations [4].
Conclusions and Future Work		References
> We have obtained the total diurnal tide climatology over Jicamarca, and we have inferred the non-migrating contribution, being the DE3 (DW2) tide significant from June to September (from November to July) for the zonal		 [1] Chau et al. (2021). DOI: 10.1029/2020EA001293 [2] Wan et al. (2010). DOI:10.1029/2010JA015527

(meridional) component. Finally, periods between 5-80 days are observed that modulate the total diurnal tides.

[3] Wu et al. (2008). DOI: :10.1029/2007JA012543

6826(96)00143-5