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Pre-dawn TINa Peak Phase Determination:

d 2D Hamming smoothing windows with full widths of 0.5 hr and 5
km for minimizing noise to better determine peak mixing ratios.

d Tracers to make direct measurements in
“thermospheric gap” (100—200 km).

d Study fundamental processes in the
space-atmosphere interaction region.

d Elevated Na mixing ratios exhibit continuous downward phase progression from the top
altitudes (roughly 135-150 km) to ~110 km in each month (pre-dawn TINa layers).
d Occurrence time of pre-dawn TINa layers apparently shifts with seasons, related to sunrise.
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