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o E-folding time ranges from 9 to 336 minutes, with a median o E-folding time ranges from 30 to 355 minutes, with a median
Motivation response time of 93 minutes response time of 142 minutes
1) Develop a new method for analyzing the neutral wind response « Weighted WTLC time ranges from 5 - 85 minutes, with a e Weighted WTLC time ranges from 0 to 15 minutes, with a
time in the high-latitude auroral region. median response time of 13 minutes median response time of 15 minutes
2) Use the C()mparison of these response times to geomagnetic indices o Difference in response time is 80 minutes e Difference in response time is 127 minutes
to give insight to the dynamics of I-T coupling. o Both e-folding time and weighted WTLC time remain fairly o E-folding time is much more variable than weighted WTLC
steady throughout the event time
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» Unweighted WTLC: Eventis sp lt into two hour W1nd.ows and o The dependence of response times on the AE index is weak, with a large scatter
performs the time-lagged correlation (TLC) of each window o Lag time is consistently shorter than e-folding time, with the average difterence being 86 minutes, suggesting significant
« Weighted WTLC: Results of each window are weighted by full thermospheric forcing other than ion-drag
correlation curve « However, Kiene et al. (2018) suggested that e-folding time could grow very large when coupling reaches a steady state
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Conclusions & Future Work
o The new weighted WTLC method provides a time- o Future work includes adding statistics from 2012
o) T §.ependent neutral wind response time that considers all 4 Response times will also be compared to local geomagnetic
o 0.8 ] thermospheric wind drivers indices, such as local magnetometer data and electron
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788 » Both the e-folding time and lag times vary little with o Various high-latitude drivers will be used to simulate
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Figure 3. (a-c) Correlation coeflicient vs. lag time plots of the unweighted WTLC, full
TLC, and weighted WTLC on 2013 Feb 28. for support and access to TIE-GCM.




