Current Continuity in Auroral System Science: Defining Electron Precipitation

J. van Irsel¹ (Jules.van.Irsel.gr@Dartmouth.edu), B. Francis Jr.¹, M. Conneely¹, A. Mule¹, S. R. Kaeppler², M. D. Zettergren³, K. A. Lynch¹; MITC-14 ¹Dept. of Physics and Astronomy, Dartmouth College; ²Dept. of Physics and Astronomy, Clemson University; ³Physical Sciences Dept., Embry-Riddle Aeronautical University

Background

- Local auroral coupling of the ionosphere and magnetosphere (MI) is an open area of study (Wolf, 1975; Cowley, 2000; Lotko 2004; Amm et al. 2008).
- MI coupling demands self-consistent, topside maps of field-aligned current (FAC) and $\mathbf{E} \times \mathbf{B}$ plasma flow that agree with ionospheric conductivity patterns created by charged particle auroral precipitation.
- Discrete auroral precipitation provided by the auroral acceleration region creates arc-scale morphology in the ionospheric conductivity volume to which the MI coupling is highly sensitive.
- Quasi-static ionospheric plasma flow, FAC, and conductivity have a 2D topside relation given by Eq. 6.12 in Kelley (2009):
 - $j_{\parallel}(x, y) = \Sigma_P \nabla \cdot \mathbf{E} + \mathbf{E} \cdot \nabla \Sigma_P + (\mathbf{E} \times \mathbf{b}) \cdot \nabla \Sigma_H$ (1)

where j_{\parallel} is a horizontal map of FAC at the topside ionosphere, Σ_P and Σ_H are the height-integrated Pedersen and Hall conductivities, and E is the perpendicular ionospheric electric field

• This 2D picture can significantly hide the 3D nature of auroral current closure. • Due to the highly sensitive nature of auroral current closure to the 3D conductivity volume, how electron precipitation is defined is crucial.

Problem Statement

This work focuses on an important part of auroral arc systems: impact ionization imparted by electron precipitation. This flux is often assumed to be a simple unaccelerated Maxwellian. However, for discrete aurora, this flux can be a superposition of a primary accelerated Maxwellian population along with secondary, low energy population of re-accelerated backscatter (Evans, 1974). We investigate the bearing this has on auroral current closure by comparing unaccelerated vs. accelerated Maxwellian electron precipitation, both with and without the backscatter low-energy tail.

Ways to Define Electron Precipitation

• We look at three parallel differential electron number fluxes (see Figure 1): 1. An u

unaccelerated Maxwellian:
$$J_{\parallel}(E; E_0) = \frac{Q_0}{2E^2} \frac{E}{E} \exp\left(-\frac{E}{E}\right)$$

 $E_0 = 2 \text{ keV}$

Maxwellian

 $ZE_0^- E_0$ where Q_0 is the total energy flux, $Q_0 \equiv \int_0^\infty E J_{\parallel}(E) dE$, and E_0 is the characteristic energy.

2. An accelerated Maxwellian:

$$I_{\parallel}(E;T_s,\boldsymbol{U_d}) = \begin{cases} \frac{Q_0}{T_s^2 + (T_s + \boldsymbol{U_d})^2} \frac{E}{T_s} \exp\left(-\frac{E - \boldsymbol{U_d}}{T_s}\right), & E \ge \boldsymbol{U_d} \\ 0, & \text{else} \end{cases}$$
(3)

where T_s is the characteristic energy of the source region and U_d is the acceleration region potential drop (Kaeppler, 2013).

3. A combination of a primary accelerated Maxwellian from the source region and a low-energy tail (LET) from re-accelerated backscattered electrons of ionospheric origin (Evans, 1974).

From Precipitation Spectra to Impact Ionization

- Calculations of altitude dependent impact ionization rates are done using two methods by Fang et al. (2008) and by Fang et al. (2010):
- Method A: Fang et al. (2008) parameterize with isotropic, unaccelerated precipitation using both multistream (Lummerzheim & Lilensten, 1994) and two-stream (Solomon & Abreu, 1989) transport models.
- Method B: Fang et al. (2010) do the same but with isotropic, monoenergetic precipitation which allows for building up arbitrary precipitation spectra using multiple of their calculations (see Figure 2).

 $E_0 = 2 \text{ keV}$ **Figure 2**: A comparison of $E_0 = 4 \text{ keV}$ impact ionization rates using methods A and B. Top: Three unaccelerated Maxwellian spectra given by Eq. (2) with characteristic energies, E_0 Lines indicate the full spectra used in method A and points show what energies, E_{mono} , are used in composing the same spectra for method B. Bottom: Ionization rates vs. calculated using altitude method A (dashed) and method B (solid). This uses an MSISE-90 (Hedin, 1991) atmosphere at 10 UT on Feb 1, 2015, at 65.8° N and 207.7° *E*, with daily and 3-month-avg. F10.7 cm radio emissions of 143.7 and 137.6, and a daily Ap-index of 20.

Accelerated vs. Unaccelerated Impact Ionization

- Figure 3 shows how impact ionization altitude profiles change when comparing unaccelerated vs. accelerated Maxwellians.
- Defining an "X keV" auroral arc with either E_0 or U_d can change peak ionization rate altitudes by 10-20 kilometers.
- Depending on the source characteristic energy, T_s , an accelerated "4 keV" arc
- can vary peak ionization by 10-20 km in altitude. • Only when $E_0 = U_d = T_s$ is an unaccelerated spectrum comparable to an accelerated one

Figure 3: Left: Unaccelerated (dashed) vs. accelerated with $T_s = 800 \text{ eV}$ (solid) spectra and resulting ionization rate altitude profiles for different peak flux energies. Right: Unaccelerated with $E_0 = 4 \text{ keV}$ (dashed) vs. accelerated with $U_d = 4 \text{ keV}$ (solid) for different source characteristic energies.

Implementing Arbitrary Spectra into GEMINI

- To look at auroral current closure, we use multi-fluid model runs provided by GEMINI (Zettergren & Semeter, 2012; Zettergren & Snively, 2019). For details see github.com/gemini3d.
- This model can simulate the ionosphere at auroral arc scales (see Figure 6). • GEMINI solves for static current continuity to account for changes in model parameters impacting conductivities as it steps forward in time.
- The model is forced with a 2D topside map of FAC or flow (see Figure 7). • Additionally, in its present version, it is driven with 2D topside electron precipitation maps of Q_0 and E_0 covering impact ionization via method A.
- We implemented <u>method B</u> into GEMINI and tested it (see Figure 4).
- Figure 5 shows GEMINI results after running the three spectra in Figure 1.

Figure 4: Example test of the implementation into GEMINI of method B (solid) against the original method A (dashed). These tests are done at 4 orders of magnitude in both E_0 and Q_0 ($Q_0 = 0.1, 10, 100 \text{ mW}$) m^2 not shown).

Figure 5: GEMINI results for a 2D (alt., lat.) simulation with a line of constant topside precipitation as defined by the spectra in Figure 1 using method B. This simulation has no FAC or plasma flow drivers. **Top:** Electron density altitude profile for the three different spectra. Bottom: Hall (solid) Pedersen (dashed) and conductivity altitude profiles.

Figure 6: The general context of this work and the GEMINI model space.

Circle Comments

East [km] Figure 7: Typical topside 2D input maps for a GEMINI simulation.

-1000 -500

east [km]

500 1000 east [km]

-1000 -500

0

unaccelerated,

Zettergren, M. & Semeter J., 2012, J. of Geophys. Research, 10.1029/2012JA017637 Zettergren, M. & Snively J., 2019, J. of Geophys. Research, 10.1029/2018GL081569