
Background

• Local auroral coupling of the ionosphere and magnetosphere (MI) is an open

area of study (Wolf, 1975; Cowley, 2000; Lotko 2004; Amm et al. 2008).

• MI coupling demands self-consistent, topside maps of field-aligned current

(FAC) and 𝐄 × 𝐁 plasma flow that agree with ionospheric conductivity

patterns created by charged particle auroral precipitation.

• Discrete auroral precipitation provided by the auroral acceleration region

creates arc-scale morphology in the ionospheric conductivity volume to which

the MI coupling is highly sensitive.

• Quasi-static ionospheric plasma flow, FAC, and conductivity have a 2D

topside relation given by Eq. 6.12 in Kelley (2009):

𝑗∥ 𝑥, 𝑦 = Σ𝑃∇ ⋅ 𝐄 + 𝐄 ⋅ ∇Σ𝑃 + 𝐄 × 𝐛 ⋅ ∇Σ𝐻  1

where 𝑗∥ is a horizontal map of FAC at the topside ionosphere, Σ𝑃 and Σ𝐻 are

the height-integrated Pedersen and Hall conductivities, and 𝐄 is the

perpendicular ionospheric electric field.

• This 2D picture can significantly hide the 3D nature of auroral current closure.

• Due to the highly sensitive nature of auroral current closure to the 3D

conductivity volume, how electron precipitation is defined is crucial.

Implementing Arbitrary Spectra into GEMINI

• To look at auroral current closure, we use multi-fluid model runs provided by

GEMINI (Zettergren & Semeter, 2012; Zettergren & Snively, 2019). For

details see github.com/gemini3d.

• This model can simulate the ionosphere at auroral arc scales (see Figure 6).

• GEMINI solves for static current continuity to account for changes in model

parameters impacting conductivities as it steps forward in time.

• The model is forced with a 2D topside map of FAC or flow (see Figure 7).

• Additionally, in its present version, it is driven with 2D topside electron

precipitation maps of 𝑄0 and 𝐸0 covering impact ionization via method A.

• We implemented method B into GEMINI and tested it (see Figure 4).

• Figure 5 shows GEMINI results after running the three spectra in Figure 1.

Problem Statement

This work focuses on an important part of auroral arc systems: impact

ionization imparted by electron precipitation. This flux is often assumed to be

a simple unaccelerated Maxwellian. However, for discrete aurora, this flux can

be a superposition of a primary accelerated Maxwellian population along with

secondary, low energy population of re-accelerated backscatter (Evans, 1974).

We investigate the bearing this has on auroral current closure by comparing

unaccelerated vs. accelerated Maxwellian electron precipitation, both with and

without the backscatter low-energy tail.

Conclusions

• Even for the most basic auroral systems, a 2D description hides the 3D

nature of current closure.

• Using unaccelerated Maxwellians when modelling discrete auroral arc

systems is insufficient and an accelerated spectrum should be used instead.

• The low-energy precipitation tail caused by re-accelerated backscattered

electrons (Evans, 1974) is relatively less important for auroral current closure.
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Current Closure: Accelerated vs. Unaccelerated

• To visualize 3D current closure, we use current flux tubes made possible by

the condition of static current continuity, ∇ ⋅ 𝐣 = 0, enforced by GEMINI.

• Below are the results of four GEMINI simulations:

A. An unaccelerated Maxwellian with a 200 km wide arc of 𝐸0 = 2 keV.

B. An accelerated Maxwellian with 𝑈𝑑 = 2 keV and 𝑇𝑠 = 800 eV and LET.

C. One with precipitation and FAC cut short with and without acceleration.

• All simulations have a 300 km wide sheet of 2 μA/m2 FAC collocated with

the arc, along with a 150 km, 4 μA/m2 return sheet. The background

precipitation is unaccelerated with 𝑄0 = 0.3 mW/m2 and 𝐸0 = 1.5 keV and

they all use the same MSISE-90 values from Figure 2.

Discussions

• First and foremost, for the most basic example of an auroral system, the

morphology of current closure is 3D in nature.

o This is the interplay of the altitude-dependent Pedersen and Hall

conductivities as current finds the path of least resistance.

• The scientific community may proxy auroral precipitation as unaccelerated

Maxwellians when trying to conserve parameter space.

o This assumption inadvertently makes the choice of hot source plasma.

o When choosing Eq. (3) instead, you always have the choice of 𝑈𝑑 → 0.

• Using an unaccelerated Maxwellian when defining an auroral arc can

significantly over- or underestimate the peak impact ionization altitude, on

the order of the neutral scale height (~18 km).

o This depends largely on the 𝑇𝑠/𝑈𝑑 ratio of the precipitation.

• The electron density and conductivity altitude profiles can change

significantly when using accelerated vs. unaccelerated spectra.

o The LET seems less significant in terms of auroral current closure.

• For accelerated spectra, current flux tubes can start closing at higher

altitudes compared to unaccelerated spectra.

o This is because more of the available precipitation energy is dumped at

higher altitudes with a “colder” spectrum.

• Along-arc structures are expected to be more sensitive to choice of spectra.
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Ways to Define Electron Precipitation

• We look at three parallel differential electron number fluxes (see Figure 1):

1. An unaccelerated Maxwellian:

𝐽∥ 𝐸; 𝐸0 =
𝑄0

2𝐸0
2

𝐸

𝐸0
exp −

𝐸

𝐸0
 2

where 𝑄0 is the total energy flux, 𝑄0 ≡ 0׬

∞
𝐸𝐽∥ 𝐸 d𝐸, and 𝐸0 is the 

characteristic energy.

2. An accelerated Maxwellian:
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where 𝑇𝑠 is the characteristic energy of the source region and 𝑈𝑑 is the 

acceleration region potential drop (Kaeppler, 2013).

3. A combination of a primary accelerated Maxwellian from the source 

region and a low-energy tail (LET) from re-accelerated backscattered 

electrons of ionospheric origin (Evans, 1974).
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Figure 1: Three types of

differential electron number

fluxes: an unaccelerated

Maxwellian with 𝐸0 = 2 keV ,

an accelerated Maxwellian

with 𝑇𝑠 = 800 eV  and 𝑈𝑑 =
2 keV, and a transcribed flux

from Fig. 5a by Evans (1974)

assuming a 45° solid pitch

angle. Points indicate energies

used in composing ionization

rates via calculations by Fang

et al. (2010).

Figure 2: A comparison of 

impact ionization rates using 

methods A and B. Top: Three 

unaccelerated Maxwellian 

spectra given by  Eq. (2) with

characteristic energies, 𝐸0 . 

Lines indicate the full spectra 

used in method A and points 

show what energies, 𝐸mono , 

are used in composing the 

same spectra for method B.  

Bottom: Ionization rates vs. 

altitude calculated using 

method A (dashed) and 

method B (solid). This uses an 

MSISE-90 (Hedin, 1991) 

atmosphere at 10 UT on Feb 

1, 2015, at 65.8° N and 207.7° 

E, with daily and 3-month-avg. 

F10.7 cm radio emissions of 

143.7 and 137.6, and a daily 

Ap-index of 20.

From Precipitation Spectra to Impact Ionization

• Calculations of altitude dependent impact ionization rates are done using two

methods by Fang et al. (2008) and by Fang et al. (2010):

• Method A: Fang et al. (2008) parameterize with isotropic, unaccelerated

precipitation using both multistream (Lummerzheim & Lilensten, 1994)

and two-stream (Solomon & Abreu, 1989) transport models.

• Method B: Fang et al. (2010) do the same but with isotropic,

monoenergetic precipitation which allows for building up arbitrary

precipitation spectra using multiple of their calculations (see Figure 2).

Figure 6: The general context of this work

and the GEMINI model space.

Figure 7: Typical topside 2D input 

maps for a GEMINI simulation.

Figure 3: Left: Unaccelerated (dashed) vs. accelerated with 𝑇𝑠 = 800 eV (solid) spectra 

and resulting ionization rate altitude profiles for different peak flux energies. Right: 

Unaccelerated with 𝐸0 = 4 keV (dashed) vs. accelerated with 𝑈𝑑 = 4 keV (solid) for 

different source characteristic energies.

Figure 4: Example test of the 

implementation into GEMINI of 

method B (solid) against the 

original method A (dashed). 

These tests are done at 4 

orders of magnitude in both 𝐸0 

and 𝑄0 (𝑄0 = 0.1, 10, 100 mW/
m2 not shown).

Accelerated vs. Unaccelerated Impact Ionization

• Figure 3 shows how impact ionization altitude profiles change when

comparing unaccelerated vs. accelerated Maxwellians.

• Defining an “X keV” auroral arc with either 𝐸0 or 𝑈𝑑 can change peak

ionization rate altitudes by 10-20 kilometers.

• Depending on the source characteristic energy, 𝑇𝑠, an accelerated “4 keV” arc

can vary peak ionization by 10-20 km in altitude.

• Only when 𝐸0 = 𝑈𝑑 = 𝑇𝑠 is an unaccelerated spectrum comparable to an

accelerated one.

Figure 5: GEMINI results for a 

2D (alt., lat.) simulation with a 

topside line of constant 

precipitation as defined by the 

spectra in Figure 1 using 

method B. This simulation has 

no FAC or plasma flow drivers. 

Top: Electron density altitude 

profile for the three different 

spectra. Bottom: Hall (solid) 

and Pedersen (dashed) 

conductivity altitude profiles.
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Going Forward

• Now that we can choose any spectrum, we can construct broadband,

Alfvénic precipitation as is done by Mella et al. (2011) (see Figure 8).

• Moving away from current closure, the choice of spectrum, especially the

lower energies, also has strong effects on electron heating (see Figure 9),

and in turn also effects ion upflow.

• Other possible sensitivities: energy balance/dissipation, Cowling channel

(Cowling, 1932), neutral coupling.

• When doing all-sky imagery inversions, making the right choice of spectrum

is crucial.

Figure 8: Fig. 11b by 

Mella et al. (2011): 

broadband light intensity 

profile constructed out of 

Maxwellians.

Figure 9: Electron temperature slices due to 

precipitation spectra that are unaccelerated, 

accelerated with no LET, and accelerated with LET.
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