

Motivation

- Meteor head echoes abundant in high-power large-aperture (HPLA) radar data: up to thousands/hour
- Want to identify head echoes without searching through clutter
- Want method that works on **any** radar facility or pulse code
 - Existing method only works at Jicamarca with short pulse¹
 - Head echoes can be observed at non-HPLA facilities, albeit more infrequently^{2,3}, and technique would be valuable there

		Local Time: 12	-Jul-2005 (193)	
03:48:30	03:48:31	03:48:32	03:48:33	03:48
95 -				Anna (1997) (1) tanks - 1946adr - 1
É 100 -				
분 105	head echoes	A REPORT OF STATISTICS AND A REPORT OF A		
E 110-		Netkin Net States and States		an a
115	Circled: Meteor	A STRATE GEORGENERAL	Nonspecular trai	il echoes
J		승규는 것은 것이 있는 것이 같아?		

Meteor Experiment

Simultaneous head echo observations at three high-power radar facilities were taken before dawn on October 10th & 11th, 2019.

Resolute Bay Incoherent Scatter Radar ~120 head echoes/hour

Frequency: 442.5 MHz Pulse code: Min. Sidelobe 51, 51 µs with 1 µs baud Pulse period: 1.4 ms Beam angle: 26° azimuth, 86° elevation

Millstone Hill Observatory (MHO)

~600 head echoes/hour

442.9 MHz
Barker-7, 42 µs with 6
2 ms
270° azimuth, 45° elev

Jicamarca Radio Observatory (JRO) ~5000 head echoes/hour

Frequency: 50 MHz Pulse code: Min. Sidelobe 51, 51 µs with 1 µs baud Pulse period: 1.25 ms Beam angle: 90° elevation

General Approach

- Split raw data into chunks of size $2 \times 150 \times 150$ (or similar) with some overlap
- Real and imaginary components form separate channels
- Classify chunks as head echo (label = 1) or non head echo (label = 0)
- Group together adjacent positive chunks for further analysis

Meteor Head Echo Detection at Multiple High-Power Radar Facilities via a **Convolutional Neural Network Trained on Synthetic Data**

Space Environment and Satellite Systems • Trevor Hedges, Nicolas Lee, Sigrid Elschot

(RISR-N)

 $6 \mu s baud$

vation

Training via Synthetic Data

- **Problem:** Need O(10000) head echoes to train the network for a specific meteor radar experiment!
- Solution: generating synthetic head echoes
- Head echoes reflect pulse code + Doppler shift \rightarrow easy to synthesize
- We assume meteoroid range is exponential, and received power curve is a sinc function, with some random parameters...

$$r(t) = \left(r_0 - \frac{v_0^2}{a_0}\right) + \frac{v_0^2}{a_0}e^{(a_0/v_0)t}$$

 $r_0 \in [75, 130] \text{ km}$ **Observed head echo range:** $v_0 \in [12,73] \text{ km/s}$ $a_0 \in [0,70] \text{ km/s}^2$ $SNR \in \sim [10, 40] \, dB$ **Received voltage signal (complex):** $c(t) \in \mathbb{C}$ (pulse code) $\phi(t) \in \mathbb{R}$ (Doppler phase) $nf \in \mathbb{R}$ (noise floor) $a, b, \phi_0 \in \mathbb{R}$ (constants) Matched filter Training example Real clutter

$$b(t) = \frac{4\pi f}{c} \int_0^t v(t)dt + \phi_o$$

 $rx(t) = 10^{\frac{1}{20}(SNR+nf)}c(t)e^{i\phi(t)}\operatorname{sinc}(a+bt)$ Radar clutter is hard to synthesize but is more abundant than head echoes. Can identify clutter in data and add to synthetic head echoes:

142987

Total number of parameters

	RISR-N	MHO	JRO (non-EEJ)	JRO (EEJ)
Total test set size	11868	7140	4836	4836
<pre># positive (truth)</pre>	157	148	290	122
<pre># negative (truth)</pre>	11631	6848	4373	4574
<pre># inconclusive (truth)</pre>	80	144	173	140

truth data. Results at each facility:

Classification accuracy chunks correctly classified Sensitivity (% of head ecl chunks that are identified) Sensitivity to ≥ 15 dB ec Sensitivity to ≤ 15 dB ec Precision (% of head echo classifications that are corre

Overall sensitivities greater than 70% demonstrate the technique's capability to discriminate between head echoes and clutter. Sensitivities greater than 50% for head echoes less than 15 dB demonstrate detection of a non-exhaustive selection of the weakest head echoes.

Class activation maps for some head echoes in raw data...

Conclusions and Future Work

- population analyses

References:	Ac
[1] Li et al., 2022	Gr
[2] Janches et al., 2014	Co
[3] Panka et al., 2021	Tre
[4] Li et al., 2016	Sig
	Ĺ

SESS

Results: Performance Metrics

We manually labelled "truth" data at each facility and excluded inconclusive streak-like objects from analysis. Training set statistics:

Each neural network corresponding to each facility is tested against

	RISR-N	MHO	JRO	JRO
			(non-EEJ)	(EEJ)
(% of)	99.6	99.4	96.2	97.4
ho	75.8	80.8	77.4	71.3
choes	93.4	97.0	91.7	77.8
choes	51.5	65.3	59.4	58.5
o ect)	96.7	88.1	66.4	50.3

• Convolutional neural networks (CNNs) are highly capable of distinguishing head echoes from other radar signatures

• The CNN technique is sensitive to the weakest head echoes, which may be missed by the human eye when manually searching

• Can apply technique at any facility and pulse code to greatly speed up

• Future meteor experiments can benefit from improved meteor shower identification and estimation of neutral densities⁴ with the technique • Future work will more accurately quantify sensitivity biases of the method, and refine the synthetic data model and CNN architecture to improve sensitivity to the weakest head echoes

> cknowledgements: Thanks to the NSF Grant AGS-1920383 and NSF ant AGS-2048349 for supporting this work.

ontact info:

evor Hedges: <u>thedges@stanford.edu</u> Nicolas Lee: <u>nnlee@stanford.edu</u> grid Elschot: <u>sigrid.elschot@stanford.edu</u>