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Training via Synthetic Data Results: Performance Metrics

» Meteor head echoes abundant in high-power large-aperture (HPLA) » Problem: Need O(10000) head echoes to train the network for a We manually labelled “truth” data at each facility and excluded
radar data: up to thousands/hour specific meteor radar experiment! Inconclusive streak-like objects from analysis. Training set statistics:
» \Want to identify head echoes without sear_c_hmg through clutter » Solution: generating synthetic head echoes | | RISR-N MHO JRO (non-EEJ) JRO (EEJ)
* Want method that works on any radar facility or pulse code + Head echoes reflect pulse code + Doppler shift > easy to synthesize otal test set size 11868 | 7140 | 4836 1836
» Existing method only works at Jicamarca with short pulse’ * We assume meteoroid range Is exponential, and received power curve IS # positive (truth) 157 148 | 290 122
* Head echoes can be observed at non-HPLA facilities, albeit a sinc function, with some random parameters. .. # negative (truth) 11631 | 6848 | 4373 4574
more infrequently23, and technique would be valuable there _ # inconclusive (truth) |80 144 | 173 140
: , . : _ ae : Observed head echo range: 1o € [75,130] km
™ Circled: Meteor Q). ,— Nonspecular trail echoes : 2\ 2 vy € [12,73] km/s Each neural network corresponding to each facility is tested against
£ I head echoes Bt ‘ 1 E r(t) =|r, — 2 ) + 2 e(@/vo)t : 5 truth data. Results at each facility:
F ol O O e i R g o &0 &0 ao € 10,70] km/s
o O T ey hePL ey _ _ SNR € ~[10,40] dB
1 1 T —— Recelved voltage signal (complex): | | I
03:48:30 03:48:31 OABIE w2008 (1 S 03:48:34 03:44: 1 (SNR47f) C(t) e C (pu|Se COdE) ) - - 00 6 00 4 nO-EEJ) 07 4
— 20 Tn i (t) o assitication accuracy (% of : : : :
rx(t) 140 f 7 C(t)e Slnc(a T bt) ¢(t) € R (Doppler phase) chunks correctly classified)
: _ nf € R (noise floor) Sensitivity (% of head echo 75.8 80.8 |77.4 71.3
Meteor Exe”ment p() = — fo v(t)dt + ¢, b, by € R (constants) chunks that are identified)

. . . _ . . L Sensitivity to >15 dB echoes | 93.4 97.0 | 91.7 77.8
Sln)gl_taneous head echo observations at three hlt?]h-povxt/her radar Radar clutter_ IS hqrd to synthesuze but is more abundapt than head | Sensitivity to <15 dB echoes | 51.5 653 1504 cg C
facilities were taken before dawn on October 10" & 11™, 2019. echoes. Can identify clutter in data and add to synthetic head echoes: Precision (% of head echo 06.7 881 |66.4 50.3

classifications that are correct)

2 Molle o Resolute Bay Incoherent Scatter Radar
*‘*;42) ~ = ~120 head echoes/hour (RISR-N)
oh A= f’% 4 Frequency: 442.5 MHz

h Pulse code:  Min. Sidelobe 51, 51 us with 1 ps baud

Pulse period: 1.4 ms
Beam angle: 26° azimuth, 86° elevation

Millstone Hill Observatory (MHO)

Overall sensitivities greater than 70% demonstrate the technique’s capability to
discriminate between head echoes and clutter. Sensitivities greater than 50% for
head echoes less than 15 dB demonstrate detection of a non-exhaustive selection
of the weakest head echoes.

Class activation maps for some head echoes in raw data...

Synthetic head echo Real clutter Training example

1 1
~600 head echoes/hour O MHO
frequency;  442.9 MHz ; Head echo Q
Pulse code:  Barker-7, 42 ps with 6 ps baud — e AR with trail Radar
Pulse period: 2 ms Examples of synthetic training examples generated in pairs with and without head echo = e <+ c|utter

Beam angle: 270° azimuth, 45° elevation

Jicamarca Radio Observatory (JRO) )
~5000 head echoes/hour d

“requency: 50 MHz / Convolution. electrojet

Weak head
echo

Pulse code:  Min. Sidelobe 51, 51 ps with 1 us baud maxpool
Convolution

Pulse period: 1.25 ms
Beam angle: 90° elevation

i #3, activation Fully-connected

Conclusions and Future Work

AT ) layer, softmax
Input raw | l : l * Convolutional neural networks (CNNs) are highly capable of
General Approach et = - distinguishing head echoes from other radar signatures

] _ ) . . .
| | | o | 4 | T | __  The CNN technique Is sensitive to the weakest head echoes, which
« Split raw data into chunks of size 2x150x150 (or similar) with some gzong/;wgt?gn Slobnl may be missed by the human eye when manually searching
overlap maxpool maxpool « Can apply technique at any facility and pulse code to greatly speed up

* Real and imaginary components form separate channels
» Classify chunks as head echo (label = 1) or non head echo (label = 0)
* Group together adjacent positive chunks for further analysis

population analyses

* Future meteor experiments can benefit from improved meteor shower
identification and estimation of neutral densities* with the technigue

* Future work will more accurately quantify sensitivity biases of the
method, and refine the synthetic data model and CNN architecture to

« 3 convolutional layers with leaky rectified linear unit (RelLU)
activation function, 2x2 max pool

» Global maxpool after final convolutional layer

* Fully-connected layer with softmax performs final classification

Optimization Algorithm Adam improve sensitivity to the weakest head echoes
Loss function Cross-entropy
Batch size 100
# training examples 25000 positive/25000 negative References: K e« 19,16 NSE Syant AGS-L920585 and NSF
: . L1 t AGS- ting t .
L earning rate 0.001 initially, 5e-5 near convergence % 5' Etha'-’ 2t°2|2 14 o o SHPPOITITS T T
. . . * . = ancnes et al., Contact info:
Weight decay coetficient 1/10*(learning rate) 3] Panka etal., 2021 Trevor Hedges: thedges@stanford.edu  Nicolas Lee: nnlee@stanford.edu
otal number of parameters | 142987 4] Lietal, 2016 Sigrid Elschot: sigrid.elschot@stanford.edu
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