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• Meteor head echoes abundant in high-power large-aperture (HPLA)

radar data: up to thousands/hour

• Want to identify head echoes without searching through clutter

• Want method that works on any radar facility or pulse code

• Existing method only works at Jicamarca with short pulse1

• Head echoes can be observed at non-HPLA facilities, albeit

more infrequently2,3, and technique would be valuable there
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• Problem: Need O(10000) head echoes to train the network for a 

specific meteor radar experiment!

• Solution: generating synthetic head echoes

• Head echoes reflect pulse code + Doppler shift → easy to synthesize

• We assume meteoroid range is exponential, and received power curve is 

a sinc function, with some random parameters…

Convolutional Neural Network Architecture

Radar clutter is hard to synthesize but is more abundant than head 

echoes. Can identify clutter in data and add to synthetic head echoes:

Synthetic head echo Real clutter Training example

Examples of synthetic training examples generated in pairs with and without head echo
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RISR-N MHO JRO (non-EEJ) JRO (EEJ)

Total test set size 11868 7140 4836 4836

# positive (truth) 157 148 290 122

# negative (truth) 11631 6848 4373 4574

# inconclusive (truth) 80 144 173 140

We manually labelled “truth” data at each facility and excluded 

inconclusive streak-like objects from analysis. Training set statistics:

Each neural network corresponding to each facility is tested against 

truth data. Results at each facility:

• Split raw data into chunks of size 2×150×150 (or similar) with some

overlap

• Real and imaginary components form separate channels

• Classify chunks as head echo (label = 1) or non head echo (label = 0)

• Group together adjacent positive chunks for further analysis

• 3 convolutional layers with leaky rectified linear unit (ReLU)

activation function, 2×2 max pool

• Global maxpool after final convolutional layer

• Fully-connected layer with softmax performs final classification

RISR-N MHO JRO

(non-EEJ)

JRO

(EEJ)

Classification accuracy (% of 

chunks correctly classified)

99.6 99.4 96.2 97.4

Sensitivity (% of head echo 

chunks that are identified)

75.8 80.8 77.4 71.3

Sensitivity to ≥15 dB echoes 93.4 97.0 91.7 77.8

Sensitivity to ≤15 dB echoes 51.5 65.3 59.4 58.5

Precision (% of head echo 

classifications that are correct)

96.7 88.1 66.4 50.3

Optimization Algorithm Adam

Loss function Cross-entropy

Batch size 100

# training examples 25000 positive/25000 negative

Learning rate 0.001 initially, 5e-5 near convergence

Weight decay coefficient 1/10*(learning rate)

Total number of parameters 142987

Meteor Experiment

Simultaneous head echo observations at three high-power radar 

facilities were taken before dawn on October 10th & 11th, 2019.

Resolute Bay Incoherent Scatter Radar

Millstone Hill Observatory (MHO)

Jicamarca Radio Observatory (JRO)
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442.5 MHz

Min. Sidelobe 51, 51 µs with 1 µs baud

1.4 ms

26° azimuth, 86° elevation

442.9 MHz

Barker-7, 42 µs with 6 µs baud

2 ms

270° azimuth, 45° elevation

50 MHz

Min. Sidelobe 51, 51 µs with 1 µs baud

1.25 ms

90° elevation

~120 head echoes/hour

~600 head echoes/hour

~5000 head echoes/hour
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Class activation maps for some head echoes in raw data…
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• Convolutional neural networks (CNNs) are highly capable of

distinguishing head echoes from other radar signatures

• The CNN technique is sensitive to the weakest head echoes, which

may be missed by the human eye when manually searching

• Can apply technique at any facility and pulse code to greatly speed up

population analyses

• Future meteor experiments can benefit from improved meteor shower

identification and estimation of neutral densities4 with the technique

• Future work will more accurately quantify sensitivity biases of the

method, and refine the synthetic data model and CNN architecture to

improve sensitivity to the weakest head echoes
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Results: Performance MetricsTraining via Synthetic Data

Overall sensitivities greater than 70% demonstrate the technique’s capability to 

discriminate between head echoes and clutter. Sensitivities greater than 50% for 

head echoes less than 15 dB demonstrate detection of a non-exhaustive selection 

of the weakest head echoes.
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Conclusions and Future Work
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Observed head echo range:

Received voltage signal (complex):
𝑐(𝑡) ∈ ℂ (pulse code)

𝑛𝑓 ∈ ℝ (noise floor)
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