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Abstract Ground Based Support: VIPIR lonosonde and Wallops Digisonde Anomalies During Flight — Magnetic Field Alignment
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Planar lon Probe (PIP) Figure 5: Derived densities for both upleg (left) and downleg (right). SLP results are given in black, mNLP in blue, and modeled IRI in green. The negatlv_e CharaCte“_StIC presents In §hf_ferent shapes and sizes over the duration of the ﬂlght as
+ Spherical gold probe with 1.5” shown In Figure 11. It is not present within the Es layer where smaller Debye lengths occur. The

Electron Temperature [K]

déémegeres\” " In regions of high SNR, electron temperature derivations are made 200 400 600 800 1000 1200 1400 1600 disagreement between the SLP and mNLP in Figure 5 can likely be attributed to magnetic field
Iase = OtS Wlt reSpeCt tO T T T T T T T 1
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