

Experimental Study of Secondary Electron Emission and its Role in Atmospheric Electricity J. P. Nelson¹, J. A. Riousset¹, J.S. Méndes-Harper², L. Hartmann², and J. Dufek²

I. Summary

Paschen's law underlies our understand of scaling properties of electric discharges. It describes non-thermal, self-sustained discharges occurring in high voltage, low current, and low-pressure conditions between two parallel plate electrodes (Raizer et al., 1991). Originally established experimentally for various gas mixtures, Townsend (1915) developed a formal theory that relies on an exponential fit of the primary ionization coefficient $\alpha_{eff} \approx Apexp(-Bp/E)$ and the poorly understood secondary electron emission (γ). Raizer et al. (1991 p.75) states that "The data on γ are incomplete and often contradictory." The commonly used A, B, γ constants do not traditionally consider electrodes' geometries and materials. Riousset et al. (2022) proposed a new formalism suitable for non-planar geometries using the reduced effective ionization coefficient $\alpha_{\rm eff}/p$ and mobility μp . The new model accounts for volume and drift velocity changes along the avalanche path via a power law approximation of μp . We propose to use this new formalism and explicitly characterize the constants A and B in the effective ionization $\alpha_{\rm eff}$. In addition, we develop an experimental setup for their validation. The discharges are produced in Embry-Riddle Aeronautical University's Lightning Plasma Chamber (LPC). The initiation voltage (V_{cr}) is measured at specific pressures p and distances d in air. Distances and pressure can be adjusted using a linear feedthrough (LFT) and mass flow controller (MFC), respectively. In addition, we seek to establish how γ depends on the nature of the electrode, its geometry, surface condition, and the gas of the environment. We show that the v. Engel-Steenbeck equation (Fridman & Kennedy, 2004) and the assumed value of γ does not adequately characterize the critical voltage under non-planar geometries. We propose a χ^2 -analysis to assess the dependencies of γ on the environmental parameters and obtain accurate values for A and B. These variations may prove especially important for the initiation of Transient Luminous Events occurring near the ionosphere at low pressures.

II. Introduction

Paschen's Law & Townsend Theory

- $V \ge V_{cr} \Rightarrow$ Collision e-N (N: neutral gas) \Rightarrow lonization of **neutrals** \Rightarrow **1** ion / **2** free electrons \Rightarrow Avalanche (Townsend, 1915).
- Secondary Electron Emission S.E.E. (γ)
 - Experimental.
 - Depends on metallicity, pressure, distance, geometry, and gas mixture (Ellion, 1965).

Paschen's Law: State of the Art

- Main formalism for Townsend's theory.
- Model of infinite parallel plates.
- Not applicable to non-uniform geometries.
- Left of minimum is ill-defined (Knaster et al., 2012).
- A and B coefficients are defined by Stoletov point.

Objectives

- Definition of a new system of equations accounting for (1) distance between cathode and anode (2) S.E.E. (γ).
- Comparison with experimental data collected in the LPC chamber.
- A and B coefficients defined based on LSQ fit of either:
 - Plot of E/N vs α_{eff}
 - Plot of pd vs. $V_{cr} = Bpd/ln(Apd ln(1/\gamma + 1))$
- Estimates of S.E.E. (γ) using theory.

III. Methods & Models

multiplied input voltage amplifies 0-25V to 10-3000V. Left: Experimental setup. Right: Schematic of the experiment.

1. Physical Sciences, Embry Riddle Aeronautical University, Daytona Beach FL (nelsonj4@my.erau.edu) 2. Earth Sciences Department, University of Oregon, Eugene OR

(c) Concentric spheres.

Figure 3. (a) Rough surface electrode from previous discharges; (b) Smooth surface electrode; (c) Glow discharge from rough surface, γ =0.0029; (d) Glow discharge from smooth electrode, γ =0.0049.

b) Theory

asma relationships:	
$ abla \cdot \vec{E} = 0$	(1)
$v_{iz} = \alpha \ v_d$ where $\frac{\alpha}{N} = Ae^{-\frac{B}{E/N}}$	(2)
$v_d = \mu E$ where $\mu N = C \left(\frac{E}{N}\right)^D$	(3)

$$\frac{\partial n}{\partial m} + \nabla \cdot (n \, \vec{v}_d) = v_{ia} n$$

• Gauss' law
$$\nabla \cdot \vec{E} = 0 \Rightarrow E(r)/N$$

• Breakdown equation $\Rightarrow \frac{E}{N}$

- $n_a =$
 - $n_{\gamma} =$ $n_b =$

III. Methods & Models (cont.)

 Constitutive relationships between charge densities at *a* and *b* from primary secondary ionization and electronic currents:

$n_{\gamma} + n_i$	(5)
$\gamma(n_b-n_a)$	(6)
$A_v n_a$	(7)

$\delta = 0$: Cartesian \Rightarrow v. Engel–Steenbeck

 $\delta = 1$: Cylindrical (8)

 $\delta = 2$: Spherical

3	4	5	6	7	
nd (To	rr*om)				

al. (1991) data; (b) Comparison of
curves in air from v. Engel-Steenbeck

IV. RESUITS (CONT.)						
	Case	Fixed Param.	Derived Param.	Tests	Optimization	
Plates	1	A,B,γ	_	$\chi^2 = 11.40$	Baseline	
	2	A,B	$\gamma = .13$	$\chi^2 = 1.19$	Paschen	
	3	γ	A = 14.02, B = 318.70	$\chi^2 = 1.72$	Paschen	
Cylinders	4	$^{A,B,\gamma}$		$\chi^2 = 0.23$	Baseline	
	5	A, B	$\gamma = 0.005$	$\chi^2 = 0.13$	Paschen	
	6	γ	A = 12.51, B = 353.60	$\chi^2 = 0.11$	Paschen	
Point to Plane	7	A,B,γ	_	$\chi^2 = 879.56$	Baseline	
	8	A, B	$\gamma = 0.003$	$\chi^2 = 302.91$	Paschen	
	9	γ	A = 12.80, B = 420.20	$\chi^2 = 107.12$	Paschen	

Table 1. Case studies for air. Raizer et al. (1991, Tab.4.1) suggests that A = 15/(cm*Torr), B=365 V/(cm*Torr), $\gamma = 10^{-2}$. All optimizations based on best fit equation.

Role of previous ionization path:

- Unpurged chamber \Rightarrow Presence of free ions/electrons \Rightarrow Easier breakdown \Rightarrow Lower V_{cr} .
- Purged chamber \Rightarrow Little/no free charges \Rightarrow Stricter conditions \Rightarrow Higher V_{cr} .
- Improper grounding \Rightarrow Easier breakdown \Rightarrow Lower V_{cr} .

Roles of primary α_{eff} and secondary electron emission γ :

- Discrepancy between experiments and theory when A, B calculated from Stoletov's points.
- Impossible to calculate A & γ separately based on v. Engel-Steenbeck equation \Rightarrow Discrepancies when LSQ fit is used.
- Surface conditions of electrode \Rightarrow accrued errors in discharge parameters.

- We developed a new experimental setup to create self-sustained electrical discharges in air.
- We preformed the first tests of scalability for the newly revised formalism for Paschen's law (Riousset et al., 2022, under review).
- We compared the estimates of A and B obtained from Stoletov's point to a LSQ fit and showed that the accepted gas constants and secondary electron emission only hold true at minimum critical voltage.
- We demonstrated that adopting the v. Engel-Steenbeck equation as a standard description of the Paschen curves does NOT let us calculate A and γ separately.
- We experimentally showed that rough surface conditions of electrode decreases the secondary electron emission.

10.1201/9781482293630.

3540194620.

and spherical geometries. ArXiv:2212.06147.

The authors acknowledge support from the National Science Foundation under grant 2047863 to Embry Riddle Aeronautical University, and the support by the Center for Space and Atmospheric Research (CSAR).

IV/ Deculte / cont

V. Discussion

VI. Conclusions

The principal results and contributions from this work can be summarized as follows:

• We found discrepancies between theoretical calculations of critical voltage and experiments.

References

- Ellion, M.E. (1965). A Study of electrical discharges in low-pressure air. Jet Propulsion Laboratory. Fridman, K., & Kennedy, L. (2004). *Plasma Physics and Engineering*. Taylor & Francis Books, Inc. DOI:
- Knaster, J., & Penco, R. (2012). Paschen tests in superconducting coils: why and how. IEEE Transactions on Applied Superconductivity, vol. 22, no. 3, doi:10.1109/TASC.2011.2175475.
- Raizer, Y., Kisin V., & Allen, J. (1991). Gas Discharge Physics. Springer Berlin Heidelberg. ISBN: 978-
- Riousset, J.A., et al., (2022). A generalized Townsend's theory for Paschen curves in planar, cylindrical,
- Townsend, J.S.E (1915). *Electricity in Gases*. Claredon Press. ISBN: 9780266527886.

Acknowledgments

