
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Paschen's law underlies our understand of scaling properties of electric discharges. It describes
non-thermal, self-sustained discharges occurring in high voltage, low current, and low-pressure
conditions between two parallel plate electrodes (Raizer et al., 1991). Originally established
experimentally for various gas mixtures, Townsend (1915) developed a formal theory that relies
on an exponential fit of the primary ionization coefficient 𝛼eff ≈ 𝐴𝑝exp(−𝐵𝑝/𝐸) and the poorly
understood secondary electron emission (𝛾). Raizer et al. (1991 p.75) states that “The data on
𝛾 are incomplete and often contradictory.” The commonly used A, B, 𝛾 constants do not
traditionally consider electrodes' geometries and materials. Riousset et al. (2022) proposed a
new formalism suitable for non-planar geometries using the reduced effective ionization
coefficient Τ𝛼eff 𝑝 and mobility 𝜇𝑝. The new model accounts for volume and drift velocity
changes along the avalanche path via a power law approximation of 𝜇𝑝. We propose to use this
new formalism and explicitly characterize the constants A and B in the effective ionization 𝛼eff.
In addition, we develop an experimental setup for their validation. The discharges are produced
in Embry-Riddle Aeronautical University’s Lightning Plasma Chamber (LPC). The initiation
voltage (𝑉cr) is measured at specific pressures p and distances d in air. Distances and pressure
can be adjusted using a linear feedthrough (LFT) and mass flow controller (MFC), respectively. In
addition, we seek to establish how 𝛾 depends on the nature of the electrode, its geometry,
surface condition, and the gas of the environment. We show that the v. Engel-Steenbeck
equation (Fridman & Kennedy, 2004) and the assumed value of 𝛾 does not adequately
characterize the critical voltage under non-planar geometries. We propose a 𝜒2−analysis to
assess the dependencies of 𝛾 on the environmental parameters and obtain accurate values for A
and B. These variations may prove especially important for the initiation of Transient Luminous
Events occurring near the ionosphere at low pressures.

I. Summary

III. Methods & Models 

• Plasma relationships:
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• Constitutive relationships between charge
densities at a and b from primary secondary
ionization and electronic currents:

𝑛𝑎 = 𝑛𝛾 + 𝑛𝑖 (5)

𝑛𝛾 = 𝛾(𝑛𝑏 − 𝑛𝑎) (6)

𝑛𝑏 = 𝐴𝑣𝑛𝑎 (7)

III. Methods & Models (cont.) IV. Results (cont.)

VI. Conclusions

Role of previous ionization path:

• Unpurged chamber ⇒ Presence of free ions/electrons ⇒ Easier breakdown ⇒ Lower 𝑉cr.

• Purged chamber ⇒ Little/no free charges ⇒ Stricter conditions ⇒ Higher 𝑉cr.

• Improper grounding ⇒ Easier breakdown ⇒ Lower 𝑉cr.

Roles of primary 𝜶𝐞𝐟𝐟 and secondary electron emission 𝜸:

• Discrepancy between experiments and theory when A, B calculated from Stoletov’s points.

• Impossible to calculate A & γ separately based on v. Engel-Steenbeck equation ⇒ Discrepancies
when LSQ fit is used.

• Surface conditions of electrode ⇒ accrued errors in discharge parameters.
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a) Experimental setup

Paschen’s Law & Townsend Theory

• 𝑽 ≥ 𝑽𝒄𝒓 ⇒ Collision e-N (N: neutral gas) ⇒ Ionization of
neutrals ⇒ 1 ion / 2 free electrons ⇒ Avalanche (Townsend,
1915).

• Secondary Electron Emission S.E.E. (𝛾)

• Experimental.

• Depends on metallicity, pressure, distance, geometry,
and gas mixture (Ellion, 1965).

II. Introduction

Figure 1. Geometries:
(a) Parallel plates;
(b) Coaxial cylinders;
(c) Concentric spheres.
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Paschen’s Law: State of the Art
• Main formalism for Townsend’s theory.
• Model of infinite parallel plates.
• Not applicable to non-uniform geometries.
• Left of minimum is ill-defined (Knaster et al., 2012).
• A and B coefficients are defined by Stoletov point.

Objectives
• Definition of a new system of equations accounting for (1)

distance between cathode and anode (2) S.E.E. (𝛾).
• Comparison with experimental data collected in the LPC

chamber.
• A and B coefficients defined based on LSQ fit of either:

• Plot of E/N vs 𝛼eff
• Plot of pd vs. 𝑉cr = Bpd/ln(Apd – ln(1/ 𝛾 +1))

• Estimates of S.E.E. (𝛾) using theory.

Figure 2. Experimental setup for initiating electrical dischargers in various environments. HVDC
multiplied input voltage amplifies 0-25V to 10-3000V. Left: Experimental setup. Right: Schematic
of the experiment.

IV. Results

Table 1. Case studies for air. Raizer et al. (1991, Tab.4.1) suggests that A = 15/(cm*Torr), B=365
V/(cm*Torr), γ = 10−2. All optimizations based on best fit equation.
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Figure 5. (a) Comparison of ‘acceptable range’ for Raizer et al. (1991) data; (b) Comparison of
‘acceptable range’ for Nelson data; (c) Discrepancy of Paschen curves in air from v. Engel-Steenbeck
equation.
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Figure 4. (a) Role of variable B in Paschen curves; (b) Role of variable A in Paschen curves; (c) Role of

γ in Paschen curves. 𝐵 = 𝑉min/𝑝𝑑min 𝐴 = ҧ𝑒 ln
1

𝛾
+ 1 /𝑝𝑑min (Fridman & Kennedy, 2004, p.210).
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Figure 3. (a) Rough surface electrode from previous discharges; (b) Smooth surface
electrode; (c) Glow discharge from rough surface, γ=0.0029; (d) Glow discharge from
smooth electrode, γ=0.0049.

V. Discussion

The principal results and contributions from this work can be summarized as follows:

• We developed a new experimental setup to create self-sustained electrical discharges in air.

• We preformed the first tests of scalability for the newly revised formalism for Paschen’s law (Riousset
et al., 2022, under review).

• We found discrepancies between theoretical calculations of critical voltage and experiments.

• We compared the estimates of A and B obtained from Stoletov’s point to a LSQ fit and showed that the
accepted gas constants and secondary electron emission only hold true at minimum critical voltage.

• We demonstrated that adopting the v. Engel-Steenbeck equation as a standard description of the
Paschen curves does NOT let us calculate A and γ separately.

• We experimentally showed that rough surface conditions of electrode decreases the secondary
electron emission.

• Gauss’ law ∇ ∙ 𝐸 = 0 ⇒ E(r)/N

• Breakdown equation ⇒ ቚ
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𝛿 = 0: Cartesian ⇒ v. Engel−Steenbeck
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• 𝐸 = −∇𝑉(𝑟) ⇒ 𝑉cr

b) Theory
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