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which have large values for electron dynamic. U is 
a Gaussian white noise vector. This approach force 
the use of small time-step  discretization   (dt<<1)  
for   a   Euler-Maruyama   algorithm,  generating  adrift gyro-term diffusion

SDE NUMERICAL SOLVERS
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Higher-order algorithms based on more complex expansions 
avoids the use of small time-step discretization, however, 
more terms are needed to be calculated on each iteration to 
maintain precision and stability.

A weak convergence test is presented in Figure II, solving the 
1D system with analytical solution shown in Debrabant & 
Robler (2010). This test establish the relationship between 
precision and computational discretization for solvers listed in 
table I: 

Algorithm Description Features

EM Euler-Maruyama Explicit, Weak 
order 1

RDI1WM Stochastic Runge-Kutta 
based algorithm

Explicit, Weak 
order 1

RDI4WM Stochastic Runge-Kutta 
based algorithm

Explicit, Weak 
order 2

RI5 Stochastic Runge-Kutta 
based algorithm

Explicit, Weak 
order 2

DRI1 Approximated EM (Drift 
Condition)

Explicit, Weak 
order 1

high computational execution time.  The stiffness behavior of this model require a better computational 
treatment to increase efficiency. A wide exploration on SDE numerical solvers have been covered and 
numerical benchmarks have been performed.

Table I: List of  Stochastic Solvers

Figure II: Weak order of  convergence (q) analysis for algorithms Listed in 
Debrabant & Robler (2010)

Algorithm dt (s) Execution Time (s) Error

Adaptive EM
dt ~ 1/10β 0.923 ~ 10⁻¹

dt ~ 1/100β 5.96 ~ 10⁻²

RDI4WM
0.315 0.17 ~ 10⁻¹

0.1 0.638 ~ 10⁻²

Table II: Execution time and computational error are measure for 
Adaptive Euler-Maruyama and RDI4WM

Figure II: Both plots show a histogram for adaptive time step. The right panel is 
for the dt ~ 1/10β, and the right panel  is for dt ~ 1/100β. 

We identify that RDI4WM algorithm has the fewer error measurement from solvers listed in table I. In 
addition, we are also interested in compare this higher-order algorithm with the adaptive 
Euler-Maruyama scheme used by Milla & Kudeki to solve their model, explained in Table II. This test also 
suggests that the RDI4WM algorithm has a greater performance over the adaptive scheme.

SIMULATION

● The RDI4WM higher-order numerical algorithm have been used to solved Milla & Kudeki model for the 
electron particle dynamics, showing a better performance among the others .

● Numerical instability, caused by the stiffness behaviour of the Milla & Kudeki model due to the great 
values for electron Spitzer coefficients an gyro-term, was controlled with a bigger and fix time-step dt = 
1e-8. This model simulation can be reproduced faster using the new approach with a reduction on 
computational time and memory allocation.

● Due to the parallel displacement deviation shown in the Milla & Kudeki model, a statistical analysis was 
done to determine if these distributions can be fitted to a known distribution . Further analysis is 
required to establish a better simulation agreement.

●
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CONCLUSIONS

The model is used to simulate the evolution of charged particles on a O⁺plasma. The RDI4WM algorithm 
must recover the standard results form particle dynamics as shown in Figure III. This higher-order solver 
were constructed to handle with stiffness equations like Milla & Kudeki model, which include the 
Coulomb collision effect. In figure III, variable radius gyromotion behavior is recovered using this new 
stochastic solver.

Figure III: Simulated electron trajectory for an O+ plasma (Te= 1e3 K, Ne = 1012m-3), with 
B field aligned to Z-axis using the RDI4WM algorithm. The velocity histogram 

correspond to the z-direction. Orange line is a analytical Gaussian distribution with mean 
μ = 0 and variance σ = 1.

However, we must focus on recover the particle displacement, both parallel and perpendicular to the B 
field. To test a good performance of the SDE solvers, a bunch of 5000 trajectories sampled from a normal 
distribution  ~N(0, vth)  is  used  to  reproduce  the  electron  Auto Correlation  Function (ACF) shown in 
figure IV.

Figure IV : Top figure shows a simulation for a correlated time of t = 1 ms 
and an aspect angle of  α = 1.0°. Bottom figure shows a simulation for t = 

2.5 ms and aspect angle of α = 0.5°.

INTRODUCTION RESULTS
In this section, we present different parameters scenarios to explore the approximation that electron ACF 
can be decoupled in a perpendicular and parallel contributions: 

Case 1  B = 25µT;   Te = 1000 K;   Ne=1e12

Case 2 B = 12µT;   Te = 500 K;     Ne=5e12

Case 3 B = 50nT;    Te = 1000 K;   Ne=1e12

To explore the sensibility of this assumption we set 3 
different scenarios. First, a standard set of parameters 
(Case 1). Then,  a modified temperature, density and 
magnetic field (Case 2) to test the sensibility of this 
assumption to physical parameters, and finally, an almost 
unmagnetized electron dynamics (Case 3).    

Further, the numerical results from Milla & Kudeki model suggest that the particle displacement 
distribution along the B field is dominated from a non-Normal distribution. This behaviour was also 
observed  in  our  simulation  using  the  RDI4WM   higher-order  algorithm  as   shown   in  figure  VII. To 
explore the idea of a non Gaussian distribution Various distributions were tested to fit the statistics of the 

Table III: List of different physical parameters 
arrange.

Figure V: Relative error measurement for electron ACF using 

From figure V, it is observed that from the three different 
scenarios, the relative error of the electron ACF remains 
under a ~2.5% for the specific parameter combinations 
shown in table I. 

Figure VII: Normalized unit variance distribution for parallel displacements 
for different time delays. The evolution show a deviation from Gaussian 

pdf.

Figure VI: Drift Spitzer Coefficients dependency from 
temperature(left), and electron density(right). 

parallel displacements observed in the simulation for 
electron particle trajectories The best fit was obtained using 
a superposition of a Gaussian and a Laplace distributions as 
shown in Figure VIII:

Because the we assumed that the 
distributions are symmetric and centered at 
zero, we can parameterize this model using 
three parameters:

Figure IX: Time evolution of the fitting parameters of the tested 
distributions.

Figure XI: Time evolution of the RMS error for the tested distributions.

This model can be used to refine realistic estimations of the 
ISR spectra because the characteristic function has a closed 
form. From Figure IX, fitted parameters are calculated among 
integration time, using the particle parallel displacement 
distribution generated from the simulation. The RMS error 
estimation was calculated to validate the proximity of the 
Gauss Laplace distribution over all time evolution among the 
other fitted distributions.

Figure VIII: Absolute errors between various distributions and the numerical statistics of parallel 
displacements. The parameters of each distribution was obtained through nonlinear fitting.

The most complete analytical model for F-Region plasma particle dynamics, which includes the Coulomb 
collision effect, was described by  Milla & Kudeki  (2011) . The  β and D are known  as  Spitzer  coefficients


