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Ionospheric Scintillation
• Frequently disrupts satellite communication
• One of the most regular and important forms of space 

weather
• Causes ranging errors and sometimes complete loss of 

signal (loss of lock)
• Short timescale amplitude and phase fluctuations of 

radio/GNSS signals
• Driven by ionospheric density irregularities and instabilities
• Observed primarily at edges of polar cap patches in high 

latitude ionosphere, associated with the gradient drift 
instability

• Scintillation by small scale ionospheric irregularities 
remains unexplored

Finite-Difference Time-Domain Simulations
• Direct solution to Maxwell’s equations on a spatial grid 

introduced by Yee (1966)
• Plasma effects coupled to FDTD simulation using momentum 

equation for electrons

• Captures all wave/plasma effects such as refraction, Faraday 
rotation, phase/group delay, etc.
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Modeling High Latitude Scintillation
• Explore scintillation caused by irregularities with scale 

comparable to wavelength of radio signal
• Use 3D particle in cell simulations to model gradient drift 

and secondary Farley-Buneman instabilities
• Incorporate local plasma densities onto FDTD grid 
• Time domain near to far field transform
• Compare waveforms and scintillation indices to existing data
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FARR FDTD Core Features

Gradient Drift Instability
• Electrostatic plasma instability driven by density 

gradients parallel to ambient electric field
• Occurs on very large spatial scales
• Can trigger secondary meter scale Farley-Buneman 

instability

Schematic of the gradient drift instability adapted from Young (2019)
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FARR FDTD simulation of a sinusoidal perturbation in Ez at early (left) and late (right) 
times. The simulation is run on 4 separate processors and shows the perfectly matched 
layer boundary condition.

Summary
• Developed a new high-performance Finite-Difference 

Time-Domain code
• Designed for radio wave propagation in magnetized, 

collisional plasmas like Earth’s Ionosphere
• Adaptable for a variety of background plasma conditions
• Core routines are implemented

Next Steps
• Explore scintillation by irregularities with scale near 

wavelength of radio signal
• Simulate radar scattering off ionospheric instabilities
• Desired satellite-ground geometry and outputs
• Further validation
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Note: Movies of figures are available online 
at tinyurl.com/farr-sim

• Easily couples to any external simulation/model
• Preprocessing Python routine
• Reads in electron density array
• Standard input into FDTD

• Total field/ scattered field wave sources
• Novel technique for  TF/SF sources in a magnetized, 

collisional plasma

• New high-performance FDTD code for radio 
wave propagation 

• 3D domain decomposition and MPI 
parallelization 

• Perfectly Matched Layer (PML) absorbing 
boundary condition

• Effects of a magnetized, collisional plasma

An example of taking an external electron density model from a particle in cell code 
(EPPIC) and applying the Python preprocessing routine to generate a standard input for 
the FARR Finite Difference Time Domain code. 
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Radiation pattern from a dipole antenna (z polarized), modeled using FARR. The top row 
shows the near field         , and the bottom row (log scale) shows the far field at a radius 
of 6 km, generated using the near to far field transformation. 
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• Near to far field transform
• Time domain signal for E and B at any location outside 

main grid

FARR simulation of a sinusoidal plane wave introduced with a TF/SF source for two 
different scenarios. The figure on the left is free space, and the right shows scattering from 
a spherical, overdense region of plasma at the center of the domain.


