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Abstract

Data and Methodology

The Equatorial Spread-F (ESF) is a nighttime ionospheric phenomenon that can 

disturb the radio signals of global navigation satellite systems (GNSS) or 

communication systems in the equatorial zone. This phenomenon is related to 

plasma density irregularities (bubbles) generated at F-region heights in the 

ionosphere. In Peru, ESF studies have been conducted for many years using the 

Jicamarca ionospheric radar operating in the JULIA mode. The radar measures the 

ESF backscattered power registered in Range-Time-Intensity (RTI) maps. These 

RTI maps show the temporal and spatial (height) occurrence of ESF, allowing us to 

observe different morphological patterns (bottom-type, bottom-side, radar plumes, 

and others). In this work, our goal is to automatically segment and classify the ESF 

patterns in the RTI maps using machine learning and deep learning algorithms. 

Leveraging the data available in the scientific database Madrigal, different 

techniques such as Random Forest (RF), eXtreme Gradient Boosting (XGBoost), 

Neural Networks(NN), and UNET Convolutional Neural Networks are being tested. 

A comparison study between the techniques reveals the potential of UNET 

algorithm to segment and classify the ESF patterns. The features used in the 

segmentation of the RTI maps include geospace physical parameters and SNR 

texture features that provide spatial information to the learning algorithms. 

The data set used in this work 

consists of 221 RTI maps that 

correspond to the years 2019 and 

2020. The methodology involves two 

stages: building training data, and 

training a model using RF, XGBoost, 

NN and UNET methods. Figure 1 

illustrates a RTI map. 

Building training data

In this stage,  we prepared the data sets to train and test the model. First, RTI 

maps were cleaned to avoid information unrelated to the ESF; therefore, minor 

artifacts were removed.  Second,  we manually identified and labeled four patterns 

(bottom-type, bottom-side, radar plumes, and E-echoes) in each RTI map (Figure 

2). These classifications follow the descriptions in [1], [2], and [3]. Third,  following 

the recipe in [4], we decreased the resolution of the RTI maps, where each power 

value corresponds to an average of a  matrix made by a resolution of 15 min and 

15 km in height (Figure 3). Then, statistical properties of the backscatter power 

that describe the texture content of a region were calculated. In total, six statistical 

properties were determined: mean, standard deviation, smoothness, skewness of 

the histogram, uniformity, and entropy. In summary, we have considered the 

following 14 features: SNR, six texture features, range, time, vertical drift, zonal 

drift, F10.7 solar flux index, Kp geomagnetic activity index, and lunar phase. All 

these features were merged in a stack of 14 bands (Figure 4). 

Figure 1: RTI map of echoes measured by 

JULIA on 19 June 2020.

Figure 4: Stack of SNR, statistical textures, 

range, time, vertical drift, zonal drift, F10.7, Kp, 

and lunar phase.

Figure 2: Manually label

Figure 3: Low resolution

Training model

This stage involves training the models with the following methods: RF, XGBoost, 

NN, and UNET. We used Scikit-Learn and TensorFlow libraries. The 221 RTI maps 

were divided into 90% of RTI (198) for training and 10% of RTI (23) for testing.  The 

total number of pixels per class are detailed in Table 1. The K-fold cross-validation 

feature was used, and we split the training set into five random subsets named 

folds. Then, the classification algorithm was trained and evaluated five times, 

picking a different fold for evaluation every time and training on the other four folds 

(Figure 5). Grid Search and Randomized Search were used to Fine-Tune the 

hyperparameters. Table 2 shows the setting parameters for each model.

Classes N. Of Pixels

Class 1: Radar Plume 15571

Class 2: Bottomside 9791

Class 3: Bottom-type 3244

Class 4: E-Echos 838

Table 1: Total number of pixels per class.

Figure 5: Train, Validation and Test data.
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Results

RF XGBoost NN UNET

• Number of trees : 243

• Measure of the split 

quality: GINI

• Max depth of the tree: 14

• Max features for best 

split: 3.

• Max depth of a tree: 7

• Learning rate: 0.1

• Number of boosting 

rounds: 100

• Learning rate: 0.0007

• Number of hidden 

layers: 3

• Number of neurons: 4

• Optimizer: Adam.

• Activation: RELU.

• Loss function: 

Categorical Cross 

entropy.

• Number of epoch: 12

• Learning rate: 0.001

• Optimizer: Adam.

• Activation: RELU.

• Loss function: 

Categorical Cross 

entropy.

• Number of epoch: 28

• Batch size:16

Table 2: Model configurations.

Figure 13: Figure 10  labeled manually.

MODEL Accuracy %

31 Jan 2020

Accuracy %

31 May 2020

RF 74.17 70.06

XGBoost 88.08 58.68

NN 74.83 62.87

UNET 88.43 90.25

Figure 14: RF prediction of figure 10. Figure 15: XGBoost  prediction of figure10.

Figure 12: 

Feature 

Importance 

of RF 

method.

Figure 8: Confusion matrix and accuracy of NN.Figure 6: Confusion Matrix  and accuracy of RF. Figure 9: Confusion matrix and accuracy of UNET.

The metric evaluation for each model is the accuracy 

and confusion matrix shown in Figures 6, 7, 8, and 9. 

The learning models were applied to segment and 

classify two RTIs (Figure 10 and 11) that were not used 

for training and testing previously. Comparison between 

the ground truth label (Figure 13 and 18) and the model 

predictions are illustrate in figures from 14 to 17 and 

from 19 to 22. 
Figure 7: Confusion Matrix and accuracy of XGBoost. 

Figure 21: NN prediction of figure 11.Figure 19: RF prediction of figure 11. Figure 20: XGBoost prediction of figure 11.

• Four machine learning and deep learning algorithms were tested for ESF 

segmentation and classification. UNET (83.99%) reached better results than Random 

Forest (62.19%), XGBoost (52.21%) and Neural Network (67.15%) tested on 23 RTI. 

• Even though the algorithms were trained with more radar plume data, the algorithms 

tend to predict the bottomside instead of the radar plume. On the other hand,  the 

algorithms predict bottomside class instead of bottom-type due to the low quantity of 

bottom-type training data. 

• In this work, we considered features related to the plasma drift velocity, the solar flux, 

and geomagnetic activity, as well as, texture features based on the region description 

of the backscatter power to provide context information on the morphological patterns.

• The feature importance using Random Forest shows the range as the most important 

feature during classification, followed by the time, F10.7 solar flux index, smoothness, 

and the other features. 

• Future work will focus on adding more training data to balance the number of pixels 

per class.

Table 3: Accuracy results for two RTI map measured 

on  31 January  and 31 May 2020..
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Figure 16: NN prediction of figure 10.

Figure 10: RTI 

map of echoes 

measured by 

JULIA on 31 

January  2020.

Figure 11: RTI 

map of echoes 

measured by 

JULIA on 31 

May  2020.

E-echo

Radar plume

Bottomside

Bottom-type

Figure 18: Figure 11 labeled manually.

Figure 17: UNET prediction of figure 10.

Figure 22: UNET prediction of figure 11.
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