
During the Farley Buneman instability, large amounts of current are flowing in the ionosphere. Despite 
being mainly observed through radar campaigns, these currents generate large magnetic fields which 
should be noticeable on surface magnetometers. By developing a data analysis program using machine 
learning, we can measure the relationship between radar and magnetometer data and expand the 
overall dataset of observed accounts of the Farley Buneman instability.

The architecture of this model will incorporate concepts from atmospheric and space sciences as well as 
machine learning methods like polynomial regressors and support vector machines. This multi-stage 
model will be used to accurately map incoming magnetometer data to the corresponding radar data. 
Additionally, the model will predict particle velocities and temperatures to be able to expand the dataset 
of radar stations using readily available magnetometer data. Additionally, to achieve higher accuracies, 
hyperparameters will be tuned and set using relevant ionospheric plasma physics concepts.

This experiment can open new research possibilities by being able to better utilize existing 
magnetometer data to find historical accounts of the FB instability and through predicting radar data from 
magnetometer data we can expand the working dataset we have for magnetometer stations around the 
world.
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Development of Dataset
In order to run our Random Forest classifier, we needed more data to train on. However, due to 
the size of the radar data, manually parsing month by month is not a feasible strategy so we 
developed this data pipeline. The last stage data was manually reviewed and 28 examples of 
Farley Buneman instability from 2009-2022 were identified and processed.

Development of Random Forest Classifier

The general idea in training most models is developing (1) cost function, (2) backpropagation 
method, (3) forward propagation, and (4) testing. Our analysis is using a modified fit function to 
rearrange nodes. Our function works on dividing the datasets into smaller subsets to minimize 
our training policy (Entropy). 

Hyper-parameter Tuning

Conclusion and Future Work

Background:
Due to the large electron velocities in the E-region ionosphere from the Farley Buneman (FB) 
instability, intuition tells us that there should be a respective large field strength detected by 
surface magnetometers. But the exact relationship between this data is unknown. Using complex 
data analysis we were able to verify this correlation and develop a machine learning algorithm 
using random forest architecture to both predict and classify incoming magnetometer data by 
whether the FB instability occurs. Additionally, our analysis developed a dataset for Farley 
Buneman instability occurrences in radar data at the Resolute Bay station and an overall model 
architecture for analyzing alternating code radar and magnetometer data.

From a space weather perspective, being able to utilize readily available magnetometer data to 
analyze radar phenomena can vastly improve our understanding of future E-region ionospheric 
studies. Additionally, sampling bias and the non-random nature of radar campaigns can impede 
our ability to measure the frequency of FB and other E-region phenomena. 

Abstract
Before proceeding to develop the model we first listed our Hyperparameters. Hyperparameters 
are user-specified parameters that can largely impact the accuracy and functionality of the 
model. For our approach, our model has 4 hyperparameters

1) Input parameters – List of inputted data columns and size of dataset

2) Training Policy – Loss metric for minimizing per node

3) Tree Max_Depth – Depth of Final Tree

4) Number of estimators - Number of Trees in Random Forest

Despite being a notable phenomena in Ionospheric studies, the scarcity of analysis on Farley 
Buneman instability using machine learning techniques can be much attributed to the lack of a 
strong data platform. On this front, we have succeeded by generating a sample dataset from 
2009 to 2022 of notable Farley Buneman instability occurrences.

After considering the initial criteria specified in this analysis: our solution was a success. With 
over 99% accuracy, the Random Forest approach can accurately record when Farley Buneman 
occurs in magnetometer data (precision) as well as correctly identify when it doesn’t 
(recall). Additionally, clear physics conclusions can be drawn from our data analysis.

Future Work:

- Generative Models for creating Radar Data from Magnetometer Data

- Cross-validation with data from nearby stations to expand dataset

- Meta-analysis on Machine Learning Processes to find formulaic relationships between 
events

Figure 1: Sample data extracted from the RISR-N 
radar station’s AMISR website.

Figure 3 Notable example of FB Instability on 2016-08-02. 

At this point our data was labelled on the basis of FB Present = 1, and FB Not Present = 0. These 
labels were manually generated and added into the wider dataset. We have 4 categories of data. 

(1) Magnetometer < 400 nT, 

(2) Magnetometer > 400 nT, but radar doesn’t have Alternating Codes, 

(3) Magnetometer > 400 nT, radar has Alternating Codes, and FB is not identified in the radar,

(4) Magnetometer > 400 nT, radar on in the right mode, and FB is identified in the radar. 

With only case 4 being labeled FB Present, and All other cases labeled FB Not Present since we 
don’t have enough information on if FB is present or not.

Pre-Processing Function
Scripts were developed to convert missing and NaN values to 0. Additionally, the different 
datetimes had to be lined up so for simplicity, the analysis converted everything to Unixtime.

As visible in the plot, the difference between the Blue FB Negative and Orange FB positive 
samples are clearly statistically significant. With each following different histograms across the 
diagonals.

Exploring Machine Learning Approaches

Logistic Regression:

With an incredibly high false positive rate and the 
model struggling to generate accurate predictions 
for when true positives were presented, the Logistic 
Regression Machine Learning approach was ruled 
out as a possibility for the overall design of our 
architecture (Figure 6).

Naive Bayes Classifier:

The model clearly has a hard time discerning the 
data and this might be attributed to the continuous 
nature of the data as opposed to more clustered 
datasets (Figure 7).

K-Nearest-Neighbor Classifier:

So far, the KNN classifier has performed the best. 
As seen in Figure 8, with a high accuracy, low False 
Positive rates, and low False Negative rates, this 
model seems to be the perfect choice. The only 
downside of this architecture is that each model 
takes exponentially longer with every additional 
dataset (Figure 8).

Decision Tree:

The Decision Tree Classifier has the best 
performance from all the models tested. Additionally 
Decision Trees show a lower False Positive and 
False Negative rate than KNNs (Figure 8). Overall. 
The Decision Tree appears to be the most apt 
approach for classifying incoming magnetometer 
data (Figure 9).

After generating sub-trees and picking optimal ones, the tree is now fully trained and fit on the 
dataset. Figure 11 highlights the architecture of the tree with a bit of meta-analysis visualizing 
what the tree might be splitting the parameters like.

Our models’ initial phase testing results are good but not approaching the small-scale testing from 
earlier (Figure 9). This can be attributed to the more refined dataset were using for final stage 
development additionally, since FB instability is such a rare phenomena the overall performance 
of the model looks worse just because there are millions of examples of non-FB instability 
compared to only 32 known instances.

Metrics:

Accuracy: 0.9981757839438562

AUC:  0.5136790066681996

Precision:  1.0

Recall:  0.9926419866636008

F1-Score:  0.9853914631362702

Testing and Rework

The training policy decided for this approach is Entropy. At each node, the Tree will try to 
minimize the entropy of the resulting branches. This was decided to minimize training time.

With lower depths the tree can generate predictions faster but larger depths have larger 
accuracies. Due to the volume of magnetometer data, we decided to prioritize fast predictions 
and testing over marginally higher accuracies.

Figure 2: Plot of Magnetometer Data 
extracted from RES station with trendline

Figure 18: Frequency distributions of FB instabilities with labeled circumstances noted

Figure 5: Multivariate Pair Plot of Data Columns

Figure 11: Initial Tree from Random Forest with Blue representing Predicted True (Depth = 3)

Figure 12: Reworked Tree from Random Forest with Blue representing Predicted True (Depth = 5)

Figure 10: Example of Under and Overfit Decision Trees

Figure 4 Dataset Pipeline

Data Sources
The RISR-N radar at Resolute Bay, Canada provides data in 6 fields:

- Altitudes

- Electron Density

- Ion Mass

The RISR-N radar data is generated in the format of h5 files that store data in various tables for 
accessing. From here, scripts were written to convert the data into usable formats for analysis, 
predominantly pandas dataframe and numpy arrays. (Figures 1 and 2)

Objectives
# Design and Develop a Machine Learning Model using a Random Forest Classifier that can 
recognize/predict Farley Buneman instability in incoming Magnetometer Data with > 80% 
accuracy ................. (1)

# Implement a Software Dataset that stores notable dates and times of Farley Buneman 
instability recorded at the Resolute Bay Radar Station ................. (2)

- Electron Temperatures

- Electron Velocities

- E field strength

Bootstrap Aggregation and Ensemble Learning
Since multiple approaches have good performance, we can explore methods of training that 
utilize various techniques to get higher accuracies. Bagging and Stacking are the most common 
ways of boosting model accuracy.

Bagging

Bootstrap Aggregation, otherwise known as Bagging, is a technique that boosts the performance 
of machine learning algorithms by using plurality voting between various simultaneous trained 
models. We have multiple decision trees that all are trained independently and generate their 
own predictions and we can then see the majority vote to make a final decision on each given 
datapoint.

Since we’re using multiple decision trees, we have to set the number of estimators and depth of 
each tree. We trained and developed 10 random forest classifiers with varying depths from 20 to 
200. Each tree has 1 of 11 possible max depths from 10-50. Using this, we can determine our 
optimal parameters.

Our training process is very similar to standard Decision Trees except we now have to train 
multiple decision trees. Since we decided to utilize a depth of 38 and 160 trees, our results should 
be fairly accurate and not fall into the overfitting issue. 

Second Stage Rework

Our model’s performance varies greatly between true and false samples but still stays above our 
threshold, so we reworked the hyperparameters to be more manageable with max_depth of 10 
and the number of estimators being 100. At this point, we re-evaluated our model’s performance.

  Metrics:

Accuracy: 0.9981757839438562

Precision:  1.0

AUC:  0.8273945680099016

F1-Score:  0.9853914631362702

Recall:  0.9926419866636008

Figure 16 and 17: Final Stage Testing Results for Random Forest Classifier. ROC Curve and Confusion Matrix

Figure 13: Final Trees from Random Forest Classifier, Blue = Predicted True, Orange = Predicted False  

Figure 6: Logistic Regression Confusion Matrix

Figure 7: Naïve Bayes Confusion Matrix

Figure 8: KNN Confusion Matrix

Figure 9: Decision Tree Confusion Matrix

Figure 14: First Stage Testing Results of Model

First Stage Rework

As seen in Figure 14, the AUC is very low due to the rarity of FB instability. To combat this, we 
decided to reduce the negative samples to be 10% of the initial quantity this would improve the 
overall specificity of our model and lead to improved performance across the board. With our new 
dataset developed we proceeded to retest and quantify our model’s performance.

Figure 15: Second Stage Testing Results of Model

Frequency distributions were generated to measure all events when the magnetometer recorded 
over 400 nT and where Farley Buneman instability was specifically labeled and found using the 
corresponding Radar Data. We found a clear association with the solar cycle (Year Distribution), 
preference of summer months (Month Distribution), and preference of daytime (SZA Distribution).
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Here are some randomly generated trees for our architecture. At this point we split our data into 
70/30 split for training/testing data to not conflate our results.

Data Analysis


