Deep Learning Models for Ionospheric Electron Density Time Sequence Prediction

DATA-17

Abstract

- We developed electron density (Nel) prediction models using neural network (NN) with aid of neural architecture search (NAS).
- Incoherent scatter radar (ISR) at Millstone Hill observatory (MLH) serves as the database.
- Nel at the height of 350km of our interest exhibits variations in different temporal scale.
- NAS finds the optimal NN architecture, and the improvement is associated with the network complexity.
- Deep NN (DNN) with NAS (DNN-NAS) shows an improvement more than 10% over single layer NN (SLNN).

year doy MLT $F_{10.7}$ ap3

- The operation of Incoherent Scatter Radar (ISR) is limited, leaving data gaps.
- The electron densities (Nel) depend on various parameters.
- We aim to build different deep learning models to predict *Nel* with the aid of (NAS) architecture search neural technique within ISR parameters.

1.0	
0.5	
0.0 0.0	
-1.0	
-1.5	10 11
1.5	SLNN-NAS
1.0	÷.:
0.5	
iff Nel	
⊂ −0.5	
-1.0	
-1.5	10 11 Mean Nel

	SLNN	
MAE	0.1399	
RMSE	0.1908	
RE	1.2667	
(%)		

	Experiments
	Description
Purge condition	F10.7 \leq 300, Ap3 \leq 80, $\log_{10} Nel \in [\log_{10} 5 \times 10^9, \log_{10} 3 \times 10^{12}]$
Input arameters	year, cyclic DOY, cyclic SLT, F10.7, Ap3
Dataset	ISR MLH data [2003-2018] Val: [2010, 2015] Test: [2007, 2012]
ISR MLH data with altitude at the heigh of 350km were used. The one-hour length bin is applied to the	

- data, which improves the data quality.
- The purge conditions rule out cases when geophysical indices are high.
- The cyclic (sine and cosine) is applied to day of year (DOY) and solar local time (SLT) to reflect the periodic changes.

Yang Pan¹; Mingwu Jin¹; Shunrong Zhang²; Yue Deng¹;

¹Physics, University of Texas at Arlington, TX; ²Haystack Observatory, MIT, Westford, MA;

Methodologies

Term	Definition	Elements
Hyper-parameters (Л)	Network structure and training conditions	Layer numbers Neuron number at each Optimizer Learning rate
parameters (Θ)	Network trainables	Weights Biases

12 from ISR four model 3. Out for NNs.	 Nel patterns of decent coverage during 2012- to 2012-09-09. Four model outputs are mark different shapes and colors. All the models track the patterns well.
semi-annual N results.	 DNN tends to have undershoot predicte before dawn.
sult.	 DNN-NAS has the overall best predictions.

	 A typical neural network architecture forms the tree-like structure with many tunable parameters shown in the table.
layer	 Consider hyperparameters the nodes of the hierarchical tree structure. Leaves are nodes without any child node.
	 Different search algorithms of NAS: Random: the next hyper-parameter is totally random. Greedy: larger number of leaves has a less chance of being next hyper-parameter. Bayesian: Gaussian process-based update of network structures.
	Conlusion
nits of	0.275 0.250 0.225 S 0.200 0.175 0.150
09-02 ked in	0.125 0 100 200 300 400 500 Complexity
d Nel	 The Loss (MAE) decreases in a logarithmic-like way when the network complexity increases.
	 The performance of NAS saturates beyond certain complexity.
	 DNN-NAS outperforms SLNN in both fitting and prediction with a reduction more than 10%.
50 25 V	 All models can reproduce the semi- annual <i>Nel</i> pattern, similar to the empirical model (ISRIM).
0	 The daily <i>Nel</i> patterns shows the potential of NN models in predicting <i>Nel</i> in a resolved variation.
	Acknowledgment
	AFOSR, MURI Award FA9559-16-1-0364 NASA GDC-IDS
	Contacts
′09	Yang Pan: <u>yang.pan@mavs.uta.edu</u> Mingwu Jin: <u>mingwu@uta.edu</u> Shunrong Zhang: <u>shunrong@mit.edu</u> Yue Deng: <u>yuedeng@uta.edu</u>