
Fig 5: Principal Component Selection
The plot showcases the number of features (the number of principal components- which
are the 80 altitude profiles) versus their contribution to the variance. If all 80 features are
used, the model encapsulates 100% of the variance. In this case, the 8th principal
component is used to capture 85.66% of the variance. 
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IVM measures the plasma densities and drifts. [2]
MIGHTI data contains the horizontal neutral wind
profiles from the altitude range of 90-300 km. For
this analysis, the zonal winds were utilized. [2]
The data is taken from only the "perfect" magnetic
conjunctions at equatorial crossing.  (Figure 2)

For this analysis, the data from the ICON mission's Ion
Velocity Meter (IVM) and Michelson Interferometer for
Global High-resolution Thermospheric Imaging
(MIGHTI) was utilized. 

Immel et al. [2021] utilized a different dimensionality-reduction approach, using a
conductivity model to reduce the entire neutral wind profile to two features, the Hall and
Pedersen conductivity weighted winds (CWW).  [1]
To create a comparison between the PCA-based linear regression model, a weighted-wind
model was created. For this model, the mean of the wind was taken over the crossings, and
once again, the change in this mean in the 1-day interval was determined. 
To evaluate the performance of these models multiple randomized train test splits were used.
Then, finding the r^2 value of each one of these model instances led to the mean and
standard deviation being determined. (Figure 7)

The Earth's ionosphere is the upper layer of our
atmosphere - the border between us and outer space. It
is constantly changing due to the Sun's energy ionizing
various particles, but it does not follow the daily cycle of
the Sun consistently. 
There is ionospheric variability present that can be
attributed to winds in the thermosphere. (Figure 1)[1]
The aim of this investigation is to understand how the
changes in these upper atmospheric winds cause
fluctuations in the in situ plasma densities of the
ionosphere.

Fig 1: Showcases how the in
situ plasma density in the

ionosphere is influenced by
thermospheric winds

('tides').  Source: NASA
Goddard's Scientific
Visualization Studio

Using the zonal wind profiles and Python's
SKLearn, the data is split into training and test
sets to create a linear regression model
predictor that generates a predicted meridional
ion drift profile based on the zonal winds. 
Due to overfitting, a dimensionality reduction
methodology (principal component analysis) is
used to increase model efficiency (Figures 3,4).  

Linear Regression Modeling 

After developing a strong understanding of how PCA works, this is further utilized to
create a linear regression model to predict the change in the meridional drift from the
change in the zonal winds. 
To isolate day-to-day variability from other kinds of variability (seasonal,
longitudinal, etc.), a change in time interval was defined such that it yields the change
of the wind at nearly the same place and local time, separated by almost 1 day (24-
24.15 hours). 

The plot on the left showcases how the change in
predicted meridional drifts correlates with the actual
change in measured values from the IVM data. As
shown in the plot, there is a positive correlation
between the predictions and the actual values, and
overall the model seems effective in this regard.
The plot on the right showcases the residuals (the
difference between the measured changes in
meridional drifts from the IVM data and the
predictions made using the changes in zonal winds)
vs the predicted drifts. There is no clear trend in the
data, and it is clustered around the x-axis, further
showing that a linear regression model can be used
effectively. 

Fig 8: Linear Regression Model: Prediction results

Change in Meridional Drift Predictor

When the PCA is applied, a number of components
needs to be selected. This is the number of features
that will be used in the linear regression model to
optimize the bias-variance tradeoff and ensure there is
no overfitting/underfitting (Figures 5,6).

The r^2 value was used to evaluate the model
performance on both the training and test sets. They
seem to quantitatively match the Immel et al.
[2021], conclusions that were made that the found
correlations of r ~ 0.47 to 0.56, which is consistent
with the r^2  from this model of ~ 0.2. [1] 

Comparative Study: Conductivity Weighted Winds

Fig 6: Principal Component Linear Regression Model Performance
This plot validates the choice of the principal component number. As we can see
from the r^2 value, (which is a metric of how well the changes in zonal winds are
able to capture the variance in the meridional drifts) for both the train and test set,
after the 8th component, the model's performance only slightly increases for the test
set. The error bars were determined by using multiple randomized train test splits,
and determining the standard deviation of the r^2 value. 

Fig 7: Performance of the Linear Regression Models 
This plot shows the mean r^2 value of a randomized run of 100 train-test splits. As shown, the train sets outperform the test
consistently, and the PCA model and Weighted-Winds model seem to have similar outcomes for the mean r^2. 

A dimensionality-reduced principal component regression model can be used to effectively create a
predictor for the meridional ion drifts using the zonal winds. 
The performance of the PCA model is comparable to that of one that utilizes the Hall and Pedersen
conductivity-weighted winds- without making any assumptions about the conductivity, while the
conductivity-weighted wind (CWW) approach does need to assume a conductivity profile.

Fig 9: Sensitivity Profiles
The plot showcases the dependence of the linear
regression model on the features from the PCA
components and the Hall and Pederson winds. Both
models have 'weightage' profiles that follow a similar trend
throughout all of the selected altitude zonal wind profiles. 

The IVM data is filtered by using quality flags, and only considering
later local times (hours 11-16). 
The MIGHTI data consists of 84 different altitude profiles spread
through the range, and 80 of these are used for the analysis (alts 2-82). 

Data Filtering
Fig 2: This diagram shows how ICON takes measurements of
the MIGHTI horizontal wind profiles and the in situ ion drifts.

Adapted from Immel et al. (2021)

Fig 3:: Principal Component Analysis- the original wind
profiles are 'reduced' into 'weights' (linear combination of

specific features from the dataset). The plot showcases
how utilizing the first 5 features (out of 80) generates the
reduced profiles and represents their variability relatively

effectively.

Sensitivity Profiles
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may provide additional insights into correlations between the winds and the meridional ion drifts.
 The PCA procedure's efficiency increases when the datasets it is being used upon are scaled and
centered- so a methodology to scale this data could be used to improve model performance.
A similar analysis could be run on the ion density data to understand how the changes in the
densities are related to the change in the winds. 
The PCA component profiles hold information that is correlated to other factors that influence the
meridional drifts (e.g. local time), and investigating these could generate a better understanding of
the ion drifts.
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Fig 4 : Principal Component Analysis-these plots exemplify how the first
five principal components from the PCA begin to recreate the variability in
the data, and closely model the trend of the original data.

Linear regression can be modeled by an
equation, and the coefficients (or
'weights') in this equation are what
build up the sensitivity profile (as
shown in Figure 9). 

1: Space Sciences Lab, University of California Berkeley

Pranathi Kolla , Brian J. Harding, ICON Team1 1 1

Acknowledgement: Funding was provided by NASA award 80NSSC22K0061


