

EN-LoTIS Working Group Town Hall

John McCormack CEDAR Workshop

2023-06-28

ESA-NASA Lower Thermosphere-Ionosphere Science

https://science.nasa.gov/science-news/NASA and ESA Exploring New Joint Satellite Mission Concepts

ENLoTIS Working Group Members	
Jean-Jacques Berthelier	CNRS / LATMOS, France
James Clemmons	Univ. of New Hampshire, USA
Nickolay Ivchenko	KTH, Sweden
David Knudsen	Univ. of Calgary, Canada
Tomoko Matsuo	Univ. of Colorado at Boulder, USA
Astrid Maute	Univ. Colorado/CIRES, USA
Minna Palmroth	Univ. of Helsinki, Finland
Noora Partamies	Univ. Centre in Svalbard, Norway
Gareth Perry	New Jersey Inst. of Technology, USA
Robert Pfaff	Goddard Space Flight Center, USA
Theodoros Sarris	Democritus Univ. of Thrace, Greece
Claudia Stolle	Leibniz Inst. of Atm. Phys., Germany
Jeff Thayer	Univ. of Colorado at Boulder, USA
Sarah Vines	Applied Physics Lab/JHU, USA

- EN-LoTIS Working Group explores agency cooperation on future lower thermosphere-ionosphere (LTI) satellite mission concepts, targeting *in situ observations* that advance understanding of neutral-ion interactions from 100 - 200 km altitude and the ionospheric E region.
- Concept of low-flying LTI mission poses unique scientific & technical challenges. Joint ESA/NASA collaboration proposed to help address these challenges.
- Initial phase of WG provides information via science study report to help agencies plan possible future joint mission development.
- Science study report anticipated by 30 Sep 2023.
- Phase 2 to explore technical aspects (~ Jan 2024)

ENLoTIS Steering Committee: John McCormack, Alex Hoffmann David Cheney, Larry Kepko, Anja Stromme, Matt Taylor

Setting the Scene: Earth's lonosphere to scale

Model Ion Drifts Below 250 km E = 50 mV/m, East

model, 22 September 2004. Courtesy R. Pfaff

Why EN-LoTIS?

Inadequate knowledge of the transition from atmosphere to space ...

... impedes efforts to understand the Sun-Earth system as a whole

... inhibits accurate predictions of the behavior of humanity's space-faring and space-reliant systems

EN-LoTIS WG is studying first systematic, comprehensive *in situ* exploration of a collisiondominated, neutral-plasma space environment.

Science of Earth's Lower-Thermosphere-Ionosphere

LTI behavior consists of interactions among commingled matter and fields: Neutral gas (thermosphere) Plasma (ionosphere) Electric and magnetic fields

Frequent collisions between neutral and charged particles results in emergent behavior* not present in simpler systems

<u>Global</u> understanding of LTI behavior has been inhibited by lack of *in-situ, multiproperty* measurements

**Emergent behavior*: Behavior that arises out of the interactions between parts of a system and which cannot easily be predicted or extrapolated from the behavior of those individual parts.

Scientific Motivation

Electrified Geospace: LTI Collisional Electrodynamics (J)

Collisions between neutral and plasma species create emergent behavior in the neutral gas and plasma

- Collisional electrodynamics give rise to cross-field conductivity, allowing currents to flow across magnetic fields in directions parallel (Pedersen current) and perpendicular (Hall current) to E
- Collisional electrodynamics ensure LTI currents close field-aligned currents flowing to and from the magnetosphere

Open questions include: how do LTI currents close in a reactive collisional environment, how is conductivity structured vertically and horizontally, and how do winds alter the electrodynamics?

First high-level objective:

Determine how collisions between neutral and charged species affect the electrodynamics of the LTI.

Scientific Motivation

Electrified Geospace: LTI Collisional Energetics (J·E)

Collisions between neutral and plasma species create pathways for energy conversion

- Collisional heating converts electromagnetic energy to thermal energy
- Collisional heating converts kinetic energy from precipitating particles to thermal energy
- Collisional chemistry determines plasma density and excites neutral species that radiate infrared energy to deep space resulting in LTI cooling

Open questions include: how do Joule and particle heating depend on LTI properties, what are the pathways for heating by energetic particles, and what role does collisional chemistry play in regulating cooling?

Second high-level objective: **Determine how collisions between neutral and charged species affect the energetics of the LTI.**

Scientific Motivation

Electrified Geospace: LTI Collisional Dynamics (J × B)

Collisions between moving neutral and plasma species transfer momentum between the two LTI states differently with altitude and location

- Collisional dynamics provides a conduit for neutral gas motion to alter currents and generate electromagnetic fields
- Collisional dynamics impresses atmospheric wave activity on the neutral gas that modifies plasma structuring and dynamics
- Collisional dynamics transports vertically LTI neutral and ion species that impact plasma chemistry

Open questions include: how do winds accelerate plasma motions and create dynamo action, how do lower atmosphere forces influence LTI dynamics, and how do collisions invoke vertical transport and chemical change?

Third high-level objective:

Determine how collisions between neutral and charged species affect the dynamics of the LTI.

Scientific Objectives

Scientific Requirements

Required parameter determinations

Directly-measured parameters Parameters requiring physical models

> 10 20 30 Ohmic heating (nW/m³)

> > 4

Required sampling Sampling volume Sampling timing Sampling duration

Looking Ahead

Next-phase activities to advance an EN-LoTIS mission concept:

- Mission definition and feasibility studies Definition of an EN-LoTIS mission concept that is optimized to return the most compelling science within future programmatic constraints.
- Risks Identification and mitigation of "standard" and mission-specific scientific and technical risks.
- > Programmatics Exploration of programmatic pathways by which an EN-LoTIS mission could be realized.

Timeline

2023 July 20-21 – WG Quarterly meeting at ESA/ESTEC.

2023 September – Complete WG initial phase science report: Science definition and high-level observation requirements).

2024 January (TBC) – Kick off next-phase of WG activity, membership to be reviewed at that time.

EN-LoTIS Working Group Town Hall

Questions?

NASA POC: john.p.mccormack@nasa.gov

ESA POC: <u>Alex.Hoffmann@esa.int</u>

Programmatic context (ESA)

The Daedalus concept, an ESA Earth Observation Programme Earth Explorer 10 mission candidate (Phase 0)

- Targets a better understanding of the *atmosphere-space* (thermosphere-ionosphere) *coupling*, to shed light on key ionneutral interaction processes affecting structure, energetics, composition and dynamics of the upper atmosphere, by
- Exploring the *transition region* (~120 to 200 km altitude) <u>in</u>
 <u>situ</u>, using a deep diving spacecraft.

Programmatic context (NASA)

The NASA heliophysics perspective / framework

Geospace Dynamics Constellation

Goal 1: Understand how the high latitude T/I system responds to variable solar wind & magnetosphere forcing.

Goal 2: Understand how internal processes in the global ionospherethermosphere system redistribute mass, momentum, and energy.

DYNAMIC

Advance understanding of space weather variability driven by lower-atmosphere weather on Earth using small spacecraft that can launch as a rideshare with the GDC mission.

S/C altitudes > 350 km

missions in formulation or study.

The WG enables ESA-NASA cooperation on future LTI satellite mission concepts by:

- a) Reviewing and consolidating consensus science questions or goals, mission objectives, and high-level mission requirements that would inform the eventual definition and design of (a) future mission concept(s)
 - → Not starting from "blank slate" leverage knowledge from past and current mission studies
 - \rightarrow Input/feedback from research community throughout initial phase will be key
 - →From Heliophysics perspective, initial phase of ENLoTIS WG would resemble an "SDT" or Science Definition Team.
- b) Identifying scientific and technical challenges and constraints associated with these high-level requirements from *(a)* in view of facilitating trade-offs and identifying candidate measurements.
 - \rightarrow Balancing science and feasibility how low should we go vs. how low can we go?
- c) Coordinating with on-going and planned activities between NASA & ESA supporting (a) and (b)