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Ultra Low Frequency waves

ULF: frequency band for plasma waves in the Earth’s magnetosphere and
ionosphere

Largest spatial scales in the system

Many (not all) lower frequency ULF waves are well approximated by MHD
Several musical instrument / standing wave analogies for MHD wave modes
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Space Weather and I-T System Impacts
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Energy deposition and
lonosphere-Thermosphere heating
Geomagnetic/Geoelectric
disturbances, Geomagnetically
Induced Currents

Specification of ULF waves in models

Several topics not covered, including Credit: Michelle Salzano and Ayomide
ULF waves in TEC Olabode, Adapted from Gannon 2016
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Energy Deposition and I|-T

heating

Energy budget of ULF
waves L[] significant
energy
electromagnetic/kinetic
energy deposition,
comparable (~30%) to
amount deposited by a
substorm based on
models constrained by
radars and satellite
measurements [e.g.,
Greenwald and Walker,
1980; Rae et al. 2007]
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Energy Deposition and I-T
heating

How often does this occur?
How much electromagnetic
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Energy Deposition and I-T
heating: Future Work

Statistical analysis of ULF
wave energy deposition
including historic storms
Multi-satellite observations
in LEO, e.g. GDC, to resolve
time-space ambiguity
Multi-point conjunctions
Models that can capture
ULF wave energy deposition
See recent review by
Kaeppler et al., [2022]
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Neutral GIC (Amps)
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Geomagnetically Induced Currents

Meadowbrook Observed GIC - March 24, 1991

—T2GIC
—T4 GIC

""" [Kappenman, 2003]

ULF waves have appropriate
frequencies to induce geoelectric
fields and create damaging electric
currents in power systems

Some of the most extreme GIC ever
reported have a ULF waveform,
including those in the USA (above)
and New Zealand [Hartinger et al.,
2023]
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Geomagnetically Induced Currents

L
Berdichevsky average apparent resistivity (ohm.m)
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For hazard analysis, it’s crucial to

| G ® L a-e- e ' ey g '
-,
a
a land/sea conductivity
consider 3D ground conductivity
Recent magnetotelluric surveys have

improved ability to quantify ULF wave
induced geoelectric fields and GIC
[Hartinger et al., 2020; Shi et al.,

2022] Credit: Michelle Salzano and Ayomide
Olabode, Adapted from Gannon 2016




Assessing ULF wave space weather impacts:
crucial role of sampling rate
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Many ULF waves have frequencies above the Nyquist for 1-minute sampling
intervals [e.g., Hartinger et al., 2023]
This affects GIC, I-T heating, TEC studies, ...



Assessing ULF wave space weather impacts:
crucial role of sampling rate
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Assessing ULF wave space weather impacts:
specification in geospace models

Attenuation of SW density fluctuations on different grids
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Many numerical simulations can capture ULF waves, but the choice of
configuration — grid resolution, solver, boundary conditions,... - is crucial
Recent GEM ULF wave modeling challenge [Hartinger et al., 2022]



Assessing ULF wave space weather impacts:

specification in geospace models
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Need ability to specify
mesoscale driving [e.g.,
Ozturk et al., 2019; Meng et
al., 2022]

Need self-consistent
magnetosphere-ionosphere-
thermosphere models



Summary

ULF waves carry significant energy and affect space weather and the overall I-T
system: heating, geoelectric fields/geomagnetically induced currents, ...
Measurement challenges: sampling rate, time/space ambiguity, measurement
location, lack of historical data/extreme event analysis

Modeling challenges: numerical effects, boundary conditions, coupling between
regions

Future advances expected from multi-point/multi-instrument studies, improved
remote sensing techniques, self-consistently coupled
magnetosphere-ionosphere-thermosphere models

Thank you!

Recent ULF wave mini-review: Hartinger MD, Takahashi K, Drozdov AY, Shi X, Usanova ME and
Kress B (2022) ULF Wave Modeling, Effects, and Applications: Accomplishments, Recent
Advances, and Future. Front. Astron. Space Sci. 9:867394



