Have Camera - Will Travel Over 40 Years of Quantifying Dynamics and Impacts of Mesospheric Gravity Waves Around the World

> Prof. Mike Taylor Utah State University

Credit: NASA

CEDAR Workshop 2023, Distinguished Lecture

Southampton University, UK, Space Physics Group (1976-1991)

Maui, during the ALOHA-90 campaign

Prof. Mike Gadsden Aberdeen University

Prof. Pam Rothwell & Dr. Mike Hapgood

Isocon Video Camera

Marconi Instruments TF1709 camera:

- Designed for low intensity X-ray fluoroscopic screens
- with a 4.5 inch Image Isocon camera tube byP850X by English Electric Valve Co. Ltd
- Donated to our group by a London hospital

Also the P4177 Miniature Isocon camera acquired later on

Camera control unit

Video Camera:

Marconi Instruments TF1709 camera:

- Designed for low intensity X-ray fluoroscopic screens
- with a 4.5 inch Image Isocon camera tube byP850X by English Electric Valve Co. Ltd
- Donated to our group by a London hospital

Also the P4177 Miniature Isocon camera acquired later on

Now in the Museum of the Broadcast Television Camera

www.tvcameramuseum.org

Switzerland (1980):

Gornergrat Observatory

Switzerland (1980): Thunderstorm Generated Gravity Waves

14-08

69 99 29 22

Circular gravity waves!

Aug 14, 1980

Gornengrat

Atmospheric Gravity Waves

Courtesy J. Alexander

- Generated by disturbances in the troposphere (e.g. weather)
- Amplitudes grow as energy propagates upwards through the
- Waves break at high altitudes depositing their energy and
- Profound influence on the background mesospheric winds (reversal) and temperatures (cold summer mesopause)

Sources of Small-Scale Gravity Waves

• Equatorial and mid-latitudes:

- Deep convection
- Orographic wind forcing
- Jet stream instabilities
- Frontal systems, hurricanes etc...
- High latitudes:
 - Orographic forcing and weather disturbances
 - Polar jet
 - Joule heating and particle heating during magnetic storms?
- Natural and man-made explosions!

Jan 15th 2022 Hunga Tonga volcanic eruption Credit: NOAA

Earth's Airglow Emission Spectrum

Sac Peak, NM (1983): Coordinated Measurements with USU

Miniature Isocon camera aligned with SDL Interferometer (IRFWI)

Utah State University 1991 – date (ASI) "10 Day Run" Arecibo Observatory Jan, 1993

Testing Photometrics CCD camera

All-Sky Imagers

Multi-wavelength CCD All-Sky Imager (ASI)

- 180° field-of-view
- Sequential observations of multiple airglow emissions: OH (~20s exposure), O₂ (90s), OI (90s), Na (120s)

Gravity Waves Over Bear Lake Observatory, Utah

Movie: 3.6 hours $\lambda_h = 45 \text{ km}$ $v_h = 45 \text{ m/s}$ $\tau = 15 \text{ min}$

June 4-5, 2002, OH emission, altitude ~87 km

ALOHA-93, Hawaii (1993) – Spectacular GW Event

Identified as a Mesospheric Bore (Dewan and Picard, 1998)

Typical Gravity Wave Characteristics at Low Latitude: 1998-99, Cachoeira Paulista, Brazil (23°S)

First Collaboration with British Antarctic Survey (2000-2011)

Halley Station (76°S)

Ice cliffs

... leaving Antarctica, 2000

...

South Georgia

Shackleton's Grave

Gritviken Whaling Station

CEDAR Mesospheric Temperature Mapper (MTM)

Mesospheric Temperature Mapper 1997

- Sensitive bare CCD Imager developed to measure mesospheric temperature variability using airglow emissions.
- Sequential observations (60 sec. exposure) of :
 - NIR OH (6, 2) Band ~ 87 km
 - $O_2(0,1)$ A Band ~ 94 km
 - Background (~857.5 nm)
- Field of view ~90°, (180 x 180 km at 90 km altitude).
- Cycle time: ~ 3 min per OH/O₂ temperature determination (Precision ~2K).

OH and O₂ Temperature Analysis

- OH transition parameters from Goldman et al., 1998.
- Relative band intensity from (S_{1c}+S_{2c}) and T using simplified LTE calculation.

- LTE rotational distribution with Schlapp (1936) line strengths.
- Relative band intensity from LTE model using fraction of (S_{1c}+S_{2c}) at rotational temperature T.

MTM: Gravity Wave Momentum Flux (F_M) Calculation

MTM: Collaborative Measurements with Na lidars

Photo/AFRL

Mesospheric Mountain Wave Event as seen from 2 sites

Small colored image is MTM temperature map from, ALO, Chile

Large BW image is ASI data from El Leoncito, Argentina (courtesy S. Smith)

Advanved Mesospheric Temperature Mapper (AMTM)

- Large format (120° FOV) fast (f/1) telecentric optics
- IR InGaAs detector (1.5-1.65 μm) OH (3,1) band measurements
- Sequential measurements of OH rotational temperature.
 Precision 1-2 K in ~30 sec
- High-latitude capability as emission lines avoid most of the auroral contamination

Scientific Goals

- Quantify characteristics and effects of gravity waves on mesopause region
- Coordinated measurements with lidar, radar and rocket soundings

Courtesy Roy Esplin and Dave McLain (SDL)

AMTM at South Pole Station (2010)

AMTM Rotational Temperature Processing

AMTM Data Products

Long term temperature evolution of Planetary Waves

Temperature/Intensity maps Short-period GWs/Wave breaking

AMTM: Gravity Wave Breaking Event - Brightness Jun 06th, 2013, Logan, Utah (41.7°N)

 $P_1(2)$ line of the OH (3,1) emission – Exposure time 10s – 1 image every 30 s

AMTM: Gravity Wave Breaking Event - Temperature Jun 06th, 2013, Logan, Utah (41.7°N)

OH (3,1) rotational temperature – 1 map every ~30s

AMTM: South Pole Atmospheric Research

Antarctic Atmospheric Waves Research

- First collaborative project with British Antarctic Survey (2000-2011)
- South Pole AMTM (2010-to date)
- ANtarctic Gravity Waves Instrument Network (ANGWIN, 2012-to date)

Non-Stop AMTM Temperature Measurements at South Pole

South Pole 2014: Large Amplitude Planetary Wave

- Large coherent oscillations starting in June (~day 150)
- ~ 4.5 cycles observed
- Max amplitude ~12K
- Rossby PW (1,4)

Zhao et al., 2019

ANtarctic Gravity Wave Instruments Network (ANGWIN)

In 2011, researchers from USU (USA), BAS (UK), NIPR (Japan), AAD (Australia), INPE (Brazil), and more recently KOPRI (South Korea since 2018) "joined forces" to enhance collaborative GW research across Antarctica on a continental scale

- Data sharing
- Normalization of analysis techniques
- Student exchange
- Regular (~2 years) scientific workshops

ANGWIN Workshops

NIPR, Japan, 2013

USU, USA, 2014

BAS, UK, 2016

INPE, Brazil, 2018

KOPRI, South Korea, 2022

Example of ANGWIN Collaboration: M-Transform AMTM Data

• Analysis technique developed at NIPR, Japan

- 96 hours of continuous clear-sky observations over McMurdo, Antarctica (June 26-29, 2017)
- Left: Merra-2 (every 3 hours) wind profiles interpolated to each window
- Right: Phase velocity PSD and resulting wind blocking region in pink
- Bottom: Total power with marker denoting current figure position.

Hours of Data 0.0

DEEPWAVE Campaign - New Zealand (2014) Gulfstream V (GV) Upper Atmosphere Instruments

Advanced Mesospheric Temperature Mapper (AMTM):

- 120x80 km temperature and intensity maps of the OH layer (~87 km), centered at the zenith, every ~15 s (Pautet et al., 2014)

> **Rayleigh and Na lidars:** Density and temperature 20-60 km and 75-100 km

Two IR wide field-of-view side looking cameras:

OH brightness over a large region (up to 450 km on each side of the GV), every 3-4 s

Orographic Waves over Auckland Islands

Pautet et al., 2016; Eckermann et al., 2016

Ground-Based AMTM Measurements Lauder Observatory (45.0°S)

One zenith-looking mesospheric temperature mapper

- FOV 120°
- 1 temperature map every ~30s

AMTM Mountain Wave Temperature Movie, Jun 21-22, 2014 (5hrs)

Mountain Wave and Momentum Flux Variability June 21-22, 2014

Taylor et al., 2019

Atmospheric Waves Experiment (AWE)

AWE is the first dedicated NASA mission to investigate global gravity wave properties in the upper atmosphere and their impacts on the ionospherethermosphere-mesosphere (ITM)

How does tropospheric weather influence space weather?

AWE AMTM - Glamour Shots

Global GW Sources

40+ Years of Studying Atmospheric Phenomena

Projects related to gravity waves

- Switzerland, 1980 (circular GW)
- Coordinated measurements with USU, 1983
- Arecibo, Puerto Rico, 1993
- ALOHA-93, Hawaii, 1993 (Front/bore)
- NASA Guará campaign, Brazil, 1994
- MU Radar, Japan, 1995
- INPE, Brazil, 1998
- Fort Collins, Colorado, 1998
- Starfire, New Mexico, 1999 (MTM/Na lidar)
- BAS, Antarctica, 2000 to date (GW over Antarctica)
- DAWEX, Australia, 2001 (Convective sources)
- MacWAVE, Sweden, 2003 (High latitude GW)
- NASA TIMED coordination at BLO, Utah, 2002 2005
- Maui-MALT program, Hawaii, 2002 2007 (Tides, SAO, critical level filtering)
- SpreadFEx, Brazil, 2005, 2009-10 (Plasma bubbles seeding by GW)
- Andes Lidar Observatory, Chile, 2009-to date
- AMTM: ALOMAR, Norway, 2010-2017, 2023; South Pole, 2010 to date
- ANGWIN, 2012 to date
- DEEPWAVE, New Zealand, 2014 (Mountain waves)
- GW_LCYCLE 2, Norway, Sweden, Finland, 2015-16
- VortEx rocket campaign, Norway, 2023

• AWE

Projects not related to gravity waves

- Scotland, 1979 (NLC)
- Christmas Island, Pacific Ocean, 1995 (Plasma bubbles)
- Yucca Ridge sprite campaign, Colorado, 1995, 1997/98
- Leonid MAC, 1999 (meteor shower)
- Brazil Balloon Sprite campaign, 2002-2003
- Leonid MAC, 2002 (meteor shower)
- Genesis re-entry, California, 2004
- Yucca Ridge sprite campaign, Colorado, 2005
- SpreadFEx, Brazil, 2005, 2009-10 (Plasma bubbles seeding by GW)
- 2nd Brazil Balloon Sprite campaign, 2006
- Stardust re-entry, 2006
- Jules Verne ATV re-entry, Tahiti, 2008
- Hayabusa re-entry, Australia, 2010
- Draconids mission, 2011 (meteor shower)
- Supersoaker, Alaska, 2017 (NLC)

All Around the World!

