

Image Credit: Visme

Machine Learning builds upon traditional statistical techniques.

What is regression?

- Regression is the basic relationships pertaining to the data/signal.
- Regression aims to find the most simple relationship between a data and independent variables.
 - 1. Linear Regression
 - 2. Polynomial Regression
 - 3. Logistic Regression
- Regression could be used for interpolation and extrapolation.
- Polynomial regression can be further regularized using weights for coefficients (Ridge, LASSO, etc.)

Interpolation (data gaps) and Extrapolation (predicting/forecasting)

Supervised Learning Basics: Linear Regression

Linear regression finds the parameters, weight and constant, to minimize mean squared errors between predictions and actual values.

$$\hat{y} = w[0]x[0] + w[1]x[1] + \dots + w[n]x[n] + c$$

Here the \hat{y} denotes the prediction model makes, w values are the weights, x are the input parameters (feature columns), and c is a constant.

C: Constant or intercept

W[0]: Slope or first order weight

Objective/cost function: minimize $||y - Xw||_2^2$

Supervised Learning Basics: Polynomial Regression

The linear representation can be improved by adding polynomial features to the fitting function.

$$\hat{y} = w_1 x + w_2 x^2 + c$$

More polynomial terms can be added to increase the order of regression.

But it is not always a good thing.

Regression can be used in various ways: trend detection and forecasting, baseline fitting/removal, data calibration.

Evaluating Regression: Error

Most commonly used error descriptors:

• Mean absolute error

mae
$$error = \frac{1}{N} \sum_{i=1}^{N} |actual values - predictions|$$

λī

Mean absolute percentage error

mape
$$error = \frac{100 \%}{N} \sum_{i=1}^{N} \left| \frac{actual \ values \ - \ predictions}{actual \ values} \right|$$

• Mean squared error

mse error =
$$\frac{1}{N} \sum_{i=1}^{N} (actual values - predictions)^2$$

• Root mean squared error

The error =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (actual values - predictions)^2}}_{CEDAR 2023: Student Day}$$

error

predictions, y_pred

y=x line

actual values, y_true

What is classification?

- Classification is one of the most common supervised learning techniques.
- It can be simplified as "predicting classes/categories".
- A classification application consists of the following:
 - Classifier: Algorithm chosen for the task
 - Classification model: The model that predicts the class
 - Feature: Descriptors of the data set leading to distinct classes
 - Binary classification: Classification task with two outcomes
 - Multi-class Classification: Each sample belongs to only one class _0.4
 - Multi-label Classification: A sample can be assigned to a set of classes
 - Target: The class
 - Evaluation: Evaluation of the model's prediction capability
- When you are training your machine learning algorithms you have to pick whether the problem at hand is a classification or regression problem. It is not as easy as it sounds.

Supervised Learning Basics: Binary Classification

- Classification with only 2 classes is called binary classification.
- Can you think of some examples?
- What have we learnt so far to help with Binary Classification?

 \mathbb{P} Binary classification can be used for event/anomaly detection applications.

Supervised Learning Basics: Logarithmic Classification

Logistic regression is commonly used to provide a probability (pass/fail, win/lose). It is the binary classification analog of linear regression.

 $\sigma(x) = \frac{1}{1 + e^{-x}}$ from sklearn.linear_model import LogisticRegression *class* sklearn.linear model.LogisticRegression(0.5 penalty='12', *, dual=False, tol=0.0001, C=1.0, fit intercept=True, intercept scaling=1, Probability of an class weight=None, random state=None, event occurring. solver='lbfgs', max iter=100, multi class='auto', verbose=0, warm start=False, n jobs=None, **Potential Spam** *l1 ratio=None*)

х

Safe

Supervised Learning Basics: Decision Trees

Decision trees could help process more complex cases.

Decision Trees in Depth

- Decision trees are widely used for both Regression and Classification.
- They learn through if/else questions to arrive at a decision.

Decision Trees in Depth

- Decision trees are widely used for both Regression and Classification.
- They learn through if/else questions to arrive at a decision.
- Each node has a certain amount of sample in it.
- Decision trees are:
 - Very likely to overfit.
 - Very likely to be limited by the range of the data.
- Decision trees can predict both Regression and Classification.

from sklearn.tree import DecisionTreeRegressor

class sklearn.tree.DecisionTreeRegressor(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, ccp_al pha=0.0)

from sklearn.tree import DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples _split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None_class_weight=None_clas

Ensemble Methods: A random forest

- Another way to overcome overfitting is growing a forest of random decision trees with constraints.
- Random forest trains multiple decision trees in parallel and ensembles their predictions into a single decision tree.
- Each decision tree is trained with a random subset of observations.
- Random forests can be further constrained.
- from sklearn.ensemble import

RandomForestRegressor class sklearn.ensemble.RandomForestRegressor(n_estimators= 100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_feat ures='auto', max_leaf_nodes=None, min_impurity_decrease=0. 0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=Fal se, ccp_alpha=0.0, max_samples=None)

Data gap prediction with Random Forest Models

RF models are known to overfit, however they achieve a higher performance than linear interpolation.

Linear Interpolation and Random Forest (Rand. Split) Performance Comparison [2011 Storm; proton_density]

Jasmine Kobayashi, SWRI Boulder

Supervised Learning Basics: k-Nearest Neighbours

• Depending on the k number of neighbouring point labels from training data, kNN algorithms predicts a label for the point.

from sklearn.neighbors import KNeighborsClassifier

class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)

Evaluating Classification: Confusion Matrix

- There are four possible outcome of predicting classes.
 - True positive Predict 1 when the actual class is 1.
 - False positive Predict 1 when the actual class is 0.
 - True negative Predict 0 when the actual class is 0.
 - False negative Predict 0 when the actual class is 1.
- Accuracy metric alone can not account for the false positive and negative.

• from sklearn.metrics import confusion_matrix

sklearn.metrics.confusion_matrix(y_true, y_pred, *, labels=None, sample_weight= None, normalize=None)

How the decisions are made: Prediction Threshold

Threshold is 0.5 by default in binary classification and also across sklearn implementations.

But what happens when we have an imbalanced class?

How the decisions are made: Prediction Threshold

- What if we have an unevenly distributed classification problem?
- How will the threshold affect the results?

95	0
5	0

How the decisions are made: Prediction Threshold

- What if we have an unevenly distributed classification problem?
- How will the threshold affect the results?

95	0
1	4

Evaluating Classification: Precision-recall

- Precision is defined as TP/(TP+FP).
- Recall is defined as TP/(TP+FN).
- Precision-recall is a measure of the "success" of prediction. Here, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned.

from sklearn.metrics import precision recall curve

sklearn.metrics.precision_recall_curve(y_true, probas_pred, *,
pos_label=None, sample_weight=None)

from sklearn.metrics import PrecisionRecallDisplay

class sklearn.metrics.PrecisionRecallDisplay(precision, recall, *, average_precision=None, estimator_name=None, pos_label=None)[source]

Evaluating Classification: ROC curve

- Receiver Operating Characteristic Curve is the graph that shows the performance of a binary classifier. TP vs FP curve at various threshold settings.
- AUROC: area under ROC curve is a reliable metric for binary classification. It shows the probability that a random positive class observation ranks higher than a random negative class observation.

from sklearn.metrics import roc_curve, roc_auc_score

sklearn.metrics.roc_curve(y_true, y_score, *, p
os_label=None, sample_weight=None, drop_int
ermediate=True)

sklearn.metrics.roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max _fpr=None, multi_class='raise', labels=None)

Predicting different classes of aurora

The OATH data set consists of 5824 images labelled with the Ridge classifier and lays the ground work furthering automation of aurora classification.

- Enables statistical analysis of large auroral data sets.
- Various ML techniques (i.e. fully supervised) require labelled data sets.
- Could be adapted to different meso-scale auroral feature detection.

Similar classification work done by Shang et al., 2023; Sado et al., 2022; Guo et al., 2022; Yang et al., 2019 obtained high performance results.

Evaluating Accuracy of Models: Underfitting-Overfitting

	Underfitting	Just right	Overfitting
Symptoms	 High training error Training error close to test error High bias 	 Training error slightly lower than test error 	 Very low training error Training error much lower than test error High variance
Regression illustration			myst
Classification illustration			
Deep learning illustration	Error Validation Training Epochs	Error Validation Training Epochs	Error Validation Training Epochs
Possible remedies	Complexify model Add more features Train longer		Perform regularization Get more data

Conditions	Underfitting	Overfitting
Model parameters	Increase model complexity	Decrease model complexity
Regularization	Decrease regularization	Increase regularization
Data Quality	Improve data cleaning	Avoid downsampling
Feature set	Increase features	Decrease features
Data set	MORE DATA	A ALWAYS HELPS

A Machine Learning Application Framework

A machine learning application consists of the following steps:

8 Main Steps for The Machine Learning Process

- 1. Frame the problem and look at the big picture.
- 2. Get the data.
- 3. Perform exploratory analysis.
- 4. Prepare the data for the ML applications.
- 5. Explore different models and shortlist the best ones.
- 6. Fine-tune the models and combine them into a solution.
- 7. Present your solution.
- 8. Launch, monitor, and maintain your system.

1. Human augmentation

I commit to assess the impact of incorrect predictions and, when reasonable, design systems with human-in-the-loop review processes

2. Bias evaluation

I commit to continuously develop processes that allow me to understand, document and monitor bias in development and production.

3. Explainability by justification

I commit to develop tools and processes to continuously improve transparency and explainability of machine learning systems where reasonable.

4. Reproducible operations

I commit to develop the infrastructure required to enable for a reasonable level of reproducibility across the operations of ML systems.

£23

5. Displacement strategy

I commit to identify and document relevant information so that business change processes can be developed to mitigate the impact

6. Practical accuracy

InNnII

I commit to develop processes to ensure my accuracy and cost metric functions are aligned to the domain-specific applications.

7. Trust by privacy

600

I commit to build and communicate processes that protect and handle data with stakeholders that may interact with the system directly

8. Data risk awareness

I commit to develop and improve reasonable processes and infrastructure to ensure data and model security are being taken into

https://ethical.institute/principles.html

Resources for an Ethical ML Framework

Quick links to sections in this page				
Explaining predictions & models	Privacy preserving ML	Model & data versioning		
In the second se	Andel Serving and Monitoring	🚔 Neural Architecture Search		
Reproducible Notebooks	Visualisation frameworks	B Industry-strength NLP		
🧾 Data pipelines & ETL	드 Data Labelling	Metadata Management		
📉 Functions as a service	Computation distribution	📥 Model serialisation		
Optimized computation frameworks	💸 Data Stream Processing	Outlier and Anomaly Detection		
6 Feature engineering	() Feature Stores	🔀 Adversarial Robustness		
👸 Commercial Platforms	Hata Storage Optimization			

https://github.com/EthicalML/awesome-production-machine-learning#model-and-data-versioning

Contact: dsozturk@alaska.edu

Thank you!