Comparative Planetary
Magnetospheric
Processes

George Clark!, Wen Li2, Dan Gershmans3, Peter Delamere4, Bob
Marshall3, Shannon Curry®

1Johns Hopkins Applied Physics Laboratory
2Boston University

3NASA Goddard Space Flight Center
4University of Alaska, Fairbanks
5University of Colorado, Boulder
6University of California, Berkeley

Special thanks to Sasha Ukhorskiy, Margret Kivelson, Shin Ohtani,
Barry Mauk, Joachim Saur, Fran Bagenal, and Bob Lysak for their
fruitful discussions

CEDAR Workshop | June 2023 | San Diego, CA

Venus

INNER
PLANETS

OUTER
PLANETS

Credit: NASA/JPL

Saturn




Can we apply the physical insight gleaned from comprehensive
measurements at Earth to other systems?
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Why study other space environments? (M. Kivelson 2010)

« As Margy Kivelson noted in her 2010 GEM talk, we are physicists. And as physicists there
is a driving desire to change the parameters governing the system (e.g., Earth’s
magnetosphere) in order to test whether behavior varies as predicted.

« Earth’s magnetosphere experiences varying solar wind input, but other parameters, which
are important for understand magnetospheres, such as plasma sources, rotation rate,
magnetic field magnitude, size of magnetosphere change only very little or not at all.

« In contrast, elsewhere in the Solar System there are environments sourced by active moons
that tap into the vast rotational energy of the planet, magnetospheres filled with neutrals
and dust, and magnetic configurations that exhibit extreme tilts (e.g., Uranus) to the
induced variety (Mars and Venus).

« Studies of planetary magnetospheres can be considered our experiments.



Magnetospheres
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Magnetospheric scaling to planetary radius
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Planetary magnetic field configurations
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Magnetospheres throughout the Solar System

Image Credit: NASA/ESA/J.
Saur/University of Cologne
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Current sources in SW vs rotationally driven systems (credit: Barry Mauk)
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Exploring the parameter
space within our solar
Ssystem



Expectations based on Earth auroral observations vs reality (at Jupiter)
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Unexpected similarity between Jupiter’s dawn storms and Earth’s auroral substorms (Bonfond et al, 2021)
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Discrete and diffuse aurora: comparisons between Earth and Mars
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Intense ion outflow associated with moon-planet interactions
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Polar auroral region
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» Jupiter’s “polar cap” region is of high interest because it is unlike the other planets. Additional, it is filled with electric
potential structures that reach to > 1 megavolt = accelerating electrons upward and ions downward.

» Studies have also shown that Jupiter’s auroral regions are dominated by “broadband” processes (perhaps Alfvénic?)

and they create the most energetic and likely brightest auroral features.

» Unlike Earth, Saturn’s and Jupiter’s moons also play a role in scattering ions and electrons into the atmosphere



Jupiter’s unusual magnetic topology
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Summary

= We're gifted with a diverse set of planetary environments in our cosmic
backyard, making it possible to probe fundamental physics across a large
parameter regime.

= Similar physical processes found at Earth operate across the solar system, but in
some environments they’re not masked by competing mechanisms. E.g.,
localized wave environments found near the moons of Jupiter or the multi-
species and —charge state plasma found in the Gas Giant magnetospheres.

= Workshop style meetings (like GEM & CEDAR) that facilitate a collaborative
format is perfect for developing interest & consensus on the big open
auroral/magnetospheric questions that can be pursued with current datasets
and modeling capabilities



