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Abstract PIP Attitude Solutions

Observations of ambient ions in the auroral ionosphere can provide a more complete understanding of the underlying physics. In-situ observations of the % Need PIP’s orientation with respect to ambient plasma in the East-North-Up (ENU) frame Description of Missions o, N
aurora are often conducted with sounding rockets, which require an instrument package that can fit a small platform and be replicated for multiple ~ _ N : N ) X & KiINET-X (Wallops Mav 2021 ) _ /» . Bobs Tt .
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screen voltage to select energies of ions entering the detector and reaching the anode. Thus, the PIP’s data consists of a series of current vs voltage (IV) 2. Find the Direction-Cosine-Matrix (DCM) M at each time for the entire o PIPs on main p{a\yload deckplate | == ol B )y
curves over time. Using the known PIP geometry and trajectory, PIP voltage sweep and payload attitude solution, we can model IV curves for a PIP on a , , i O two PIP-Bobs eJected Z\//\:}
payload charged to an assumed potential (Vs) in an assumed Maxwellian plasma, with some assumed ion temperature (T,) and density (n;) (Fraunberger " Main payload DCMs prOV|ded by NSROC for the ﬂlght- o two Barium releases from rocket. B B ) Y
et al. RSI, 2020). We use the Levenberg-Marquardt nonlinear least-squares minimization algorithm in the LMFit python library to find the values of ni, Ti m PIP-Bob DCMs must be calculated from PIP-Bob IMU data. ' . _ w
and Vs that minimize the difference between the modeled and measured IV curves at a given time for an assumed relative velocity. Additionally, (near- f Figure 5. PIP axes < CREX-2 (Andoya, December 2021 ) PIPs on : e
)simultaneous IV curve measurements from two PIPs, separated azimuthally by a fixed angle, can be used to solve for the flow vector, given constraints 3. Rotate each PIP axis vector to the ENU frame: QPIP ENU — M dpip (looking down on main payload boom o
from the scalar parameters. Thus, scalar and flow vector plasma parameters (T;, n;and payload potential) can be derived from PIP measurements. anode). ° _ : N watcos | Y I I NG AL o
Three recent sounding rocket missions carried PIPs: the May 2021 Kinetic-scale energy & momentum transport experiment (KiINET-X) launched from Determlnatlon Of PIP BOb DCMS < LAMP (POker FIat, March 2022) PIPs on main ’ :;;ease Even”' e e Release'EV;:tz o
Wallops, the December 2021 Cusp Region Experiment 2 (C-REX-2) launched from Andoya, and the March 2022 Loss through Auroral Microburst 1. Calibrate magentometer B-field data (i.e. decouple axes) with IGRF payload deckplate
Pulsations (LAMP) mission launched from Poker Flat. Each rocket carried eight main-payload-mounted PIPs onboard. KiNET-X also had two small, : : : - N Fiqure 10. KINET-X instrumentation & release aeometrv. (Modified version of fiaure from P Delamere
deployable subpayload instrument packages (Bobs) with two pips each. 2. Get Spin (w)’ coning (9) and Precessisy (¢ ¢true A¢) angles from measu 9 : g 1y ( g . )
Here we present the preliminary results from these three rocket missions as well as demonstrate the process of determining scalar and flow vector com ponents. 2= . . : : —
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most information out of the s measurements while minimizing the uncertainty in the optimized fitting process. This is considerably more difficult for _ n . .
PIPs on Bobs than for main-payload-mounted PIPs as a Bob’s attitude must be determined separately and only two PIPs are carried on a Bob. However, 4. Construct the DCM from these Euler angles: ¢y,,(=¢-A¢), 6 and ¥ Forward PIP-Bob Middle PIP-Bob Main Payload
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