Assessing Potential Radio Occultation Constellations for Specifying Neutral Mass Density

1. The Issue: Limited Knowledge of Low Earth Orbit Neutral States

1.1 Motivation

- a. Orbit position errors in Low Earth Orbit (LEO) come primarily through atmospheric drag and need better neutral density estimates.
- b. Current neutral observations are limited.

$$\boldsymbol{a}_{drag} = -\frac{1}{2} C_D \frac{A}{m} \rho \boldsymbol{v} \boldsymbol{v}$$

1.2 Goal: Infer neutral density using electron density observations in an Observing System Simulation Experiment (OSSE)

Perform with different observation Velocity / constellations and different truth models: TIEGCM and WAM-IPE.

Observations: COSMIC Radio Occultation

COSMIC satellites use Radio Satellite Systems (GNSS) as they pass through the ionosphere. Produces electron density profiles available per hour. Used as an alternative to neutral density observations.

Model: DART-TIEGCM

Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) developed by NCAR is a first-principles model that can capture the strong coupling between the thermosphere and ionosphere. Altitudes 90 ~ 550 km. Run using DART software.

References

- 11 N. Dietrich, T. Matsuo, C.T. Hsu, Specifving Satellite Drag Through Coupled Data Assimilation of Radio Occultation Electron Density Profiles. In review at Space Weather,
- T. Matsuo and C.T. Hsu. Inference of Hidden States by Coupled Thermosphere-Ionosphere Data Assimilation, pgs. 343–363, 2021.
- I.L. Anderson. An ensemble adjustment filter for data assimilation. Monthly weather review, pgs. 2884-2903, 2001.

Acknowledgements

The study is supported by the NSF award AGS 1848544 and the NOAA Office of Projects Planning and Analysis. The DART software was obtained from NCA (http://www.image.ucar.edu/DAReS/DART). The TIEGCM software was obtained from High Altitude Observatory, NCAR (http://www.hao.ucar.edu/modeling/tgcm/tie.php). The COSMIC data were obtained from COSMIC Data Analysis and Archival Center (https://www.cosmic.ucar.edu/what-we-do/cosmic-1/data/). We acknowledge NCAR and UCAR for their community software and data support.

Nicholas Dietrich¹, Tomoko Matsuo¹, Chih-Ting Hsu², Chi-Yen Lin³, Charles Lin⁴, Tzu-Wei Fang⁵

¹ Aerospace Engineering, University of Colorado Boulder ² High Altitude Observatory, National Center for Atmospheric Research ³National Central University, Taiwan ⁴National Cheng Kung University, Taiwan ⁵National Oceanic & Atmospheric Administration

Email: Nicholas.Dietrich@colorado.edu

2. Methods: Ensemble Adjustment Kalman Filter (EAKF) by DART

Perturbed states made through a normally distributed 90-member ensemble of solar and magnetospheric drivers: F10.7 index, hemispheric power (*HP*), cross-tail potential (Φ).

Monte Carlo propagation of ensembles i = 1, ..., 90 using TIEGCM dynamics.

States sequentially updated in observation space and mapped to model space using linear regression. Regression coefficients found using sample statistics from ensembles [3].

(p	Updated States: X ~ 7.5e4 states/variable
	$[f_{e^{-}}; f_{O^{+}}; f_{T}]$
	$[f_{e^{-}}; f_{O^{+}}; f_{VN}; f_{UN}]$
	$[f_{e^{-}}; f_{O^{+}}; f_{T}; f_{VN}; f_{UN}]$

in TIEGCM- Fig. 4.1

- improves neutral
- errors for both

Ехр	Updated States: X ~ 7.5e4 states/variable
24 Inc	$[f_{e^{-}}; f_{O^{+}}; f_{T}]$
72 Inc	$[f_{e^{-}}; f_{O^{+}}; f_{T}]$

5. Conclusions

Orbit errors in LEO are reduced by 70% through better estimated neutral densities. Comes primarily through improved temperature estimation from assimilation of COSMIC RO EDPs. 2. Compared with WAM-IPE truth run, the 24 and 72 inclination RO constellations see a peak of **50%** reduced neutral density RMSE in one day.

University of Colorado Boulder