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|. Background and Objective IV. DSMC Exospheric Model
Background: As the atmosphere becomes less dense with alfitude, collisions between particles become Exospheric particle model | Ou(t:ptflf.s. ’r DSMC # Simulation Particles / Cell at 5850 km
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forcing a shift from fluid equations to a partficle kinefic model. Knudsen Number \/H_ * The grid of 3-dimensional cells begins at 362 km and s density > 1100
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Problem: Fluid model assumptions break down in the upper atmosphere 600 | Solar max . outward . Pressurg | © g 90 2
« Less frequent collisions require additional terms to be included in the - Kot « Forces that govern the motion of particles: . Trgnslqhonol, rotational, & 'f:_’_ 3
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+ These modifications become increasingly computationally expensive 3 ,5! // | Velocity in x, y, z directions -50 -0
and complex [3] = « Species: O, N2, He, & H
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Objective: create a unified model of the atmosphere from 32 km %’ DSMC Collision Rate at 1190 km <107 0 4 8 12 16 20 o4 60
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altitude through the exosphere. & 200 | e Local Time (hours)
+ Couple a fluid model of the lower atmosphere - TME-GCM — witha  © . . . L . . .
ficle model of the ubper atmosohere - MONACO J00| __ 50 |5 Fig 7. Number of simulation particles in each cell of the simulation grid for a total
partic PP S 8) number density simulation. The structure of the cubed-sphere grid (below) is
« Ensure both models output the same values in overlapping regions 410 — 1(‘)_5 — 1(‘)0 ) visible.
« |nitiate two-way coupling: both simulations exchange information Knudsen Number 3 o0
about their current state Fig 1. The Knudsen number (Kn), mean free path é
Thermosphere Exosphere dividggl by density sc§lg height, for different solar « Left: Fig 8. A
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Limit o;:a nudsen Number | Limit Left: Fig 2. Applicability of equation sets to an Fig 5. A scale visual of the model shell Fig 6. The collision rate of particles is one output of the DSMC model. -
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Il. Significance V. Coupling to TIME-GCM V1. Future Steps
« Provide a coupled, physical descripfion of the upper atmosphere and exosphere, significantly extending the . Allow exiting ballistic particles to
upper boundary of TIME-GCM. DSMC model lower boundary initial conditions reenter the model upper boundary
. |mpro\/e accuracy in projechng dr.gg Offe.chng The .Orbﬂ'cﬂ Trgjecfones of Spgcecrgﬂ' and debiris, mMinimizing e |nitiql CO.ﬂdITIOnS are del’.IV.ed from TIME-GCM, a fluid model which extends from 32 km to an altiftude ~500 km, . Examine the accuracy of the model
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