Polar Vortex or Solar Cycle: Which is the major driver of 10 years of PMC Variability at McMurdo, Antarctica?

Arunima Prakash1, Xinzhuo Chu1, V. Lynn Harvey2, Cora E Randall3, Mattia Astarita1, Jackson Jandreau1 and Ian Geraghty1
1CIRES, Ann & H.J. Smeal Department of Aerospace Engineering Sciences at the University of Colorado, Boulder.
2Laboratory for Atmospheric and Space Physics, Boulder.
3Department of Atmospheric and Oceanic Sciences at the University of Colorado, Boulder.

Why do we care and study PMCs?

PMC observations can serve as indicators for long-term changes in the atmosphere and climate. The McMurdo lidar projects were supported by the National Science Foundation (NSF) grants OPP-0839091, OPP-1246405, OPP-1441726, and OPP-2108428.

Mesopause becomes the coldest region on Earth during summer! Instead of being dry, MLT is super saturated! Mesopause becomes the coldest region on Earth during summer!

Great mysteries surrounding PMCs:

- A solar cycle signature is clearly seen from 1978-2002 but disappeared afterwards. Why?
- Which is the major driver of PMC variability: Polar Vortex vs Solar Cycle?
- Could PMCs be potential indicators of long-term climate change?

Scientific discoveries from 10 years (2010-2020) of lidar and 14 years (2007-2021) of CIPS PMC Observations

- Large interannual variability in PMC brightness that does not show an obvious anticorrelation with the solar cycle.
- PMC centroid altitude Z_c follows a normal distribution.
- PMC brightness (β_{total} and CIPS albedo) follows a lognormal distribution.
- Verified latitudinal dependence – PMC Z_c increases with latitude (Chu et al., 2011).
- Verified SH PMCs ~ 1 km higher than NH PMCs (Chu et al., 2011).

Lidar PMCs at 3 stations: South Pole (90°S), McMurdo (78°S) and Rothera (67.5°S).

CIPS data: Level 3 ground station summary per orbit confined to 500 km around McMurdo. 2017-2018 season omitted due to orbit issues with AIM satellite.

Conclusions

- Did the solar cycle signature really disappear? NO. The dynamical forcing of the polar vortex overshadows radiative forcing causing solar cycle to take a back seat in PMC variability.
- On adding the effect of solar cycle to the linear relationship of polar vortex breakup timing and PMC brightness the correlation improves by 21% indicating that polar vortex breakup timing plays a major role, while solar cycle plays a minor role on PMC brightness variability.
- How to use PMCs as indicators of long-term climate change, given that the dynamical forces cause such strong variability in PMCs? This requires further considerations.

Questions for future work

- We now know that polar vortex breakup dominates PMC variability in 2007-2021 and thus, solar cycle takes a backseat. But in 1978-2002 what made the solar cycle overshadow polar vortex when polar vortex breakup timing showed similar variability?
- Could dynamical forcing of the polar vortex overshadow radiative forcing causing the solar cycle to take a back seat in PMC variability?
- On adding the effect of solar cycle to the linear relationship of polar vortex breakup timing and PMC brightness the correlation improves by 21% indicating that polar vortex breakup timing plays a major role, while solar cycle plays a minor role on PMC brightness variability.
- How to use PMCs as indicators of long-term climate change, given that the dynamical forces cause such strong variability in PMCs? This requires further considerations.