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First Discovery. TINa Regular Occurrence Abstract: We report a new discovery—the positive correlation of thermosphere-ionosphere Na (TINa) layers with sunrise time using 7 years of high-sensitivity lidar observations over

Boulder (40.13N, 105.24%N). Despite their tenuous densities, the University of Colorado Boulder STAR lidar observations reveal pre-dawn TINa layers have nearly 100% occurrence

Thermosphere-ionosphere metal rate (160 out of 164 nights of observations). These TINa layers provide tracers to study plasma-neutral coupling in the E to lower F region.
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