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Introduction Preliminary results
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[ These models describe large-scale patterns and do By
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for 2 givgr)l set of external parameters P S > I U Figure 4 illustrates the differences between the first three EOFs characterizing the
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the CS10 model [Cousins et al., 2013b]. Assimilative

mapping 1s a a popular technique used in modeling =l In order to use the TSI8 model with the SAM =) The basis used here [figure 2] is the set of the top Eigtu reE(i’:F “ .ﬂSlan;ple
. . . _ . . . 1TS Wi ow
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