
Figure 3: (a) Sample
first EOF with low
latitude constraint vs.
(b) without. Velocity
vectors and Max/Min
potentials are marked in
black.
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q The Super Dual Auroral Radar Network
(SuperDARN) consists of approximately 40 HF radars
which continuously measure plasma parameters in the
ionosphere including line of sight (LOS) velocity.

qMany climatological models are available to
describe convection under certain conditions such as
solar wind, IMF, and geomagnetic activity. Several,
such as those referred to as the RG96, CS10, and TS18
models, were developed using SuperDARN
observations.

q These models describe large-scale patterns and do
not incorporate instantaneous data when providing a fit
for a given set of external parameters.

q To determine a global plasma convection pattern at a
particular time, assimilative techniques attempt to
appropriately combine climatological models with
instantaneous data. For example, the “Map Potential”
procedure [Ruohoniemi and Baker, 1998] combines
available SuperDARN LOS data with the background
model of choice using an error-weighted least squares
method.

q An alternative, the SuperDARN Assimilative
Mapping (SAM) technique, was successfully applied to
the CS10 model [Cousins et al., 2013b]. Assimilative
mapping is a a popular technique used in modeling
where there exists spatially sparse data with substantial
temporal coverage. Assimilative Mapping seeks to
optimally combine climatological maps and new data
using the covariance of the error of each.

q Over the past decade the number and coverage of
radars has improved significantly as shown in figure 1.
Such expansion warrants a reapplication to the TS18
model (which incorporates these new radars and data).

q The basis used here [figure 2] is the set of the top
~60 (K) principal components found by Richmond and
Kamide, [1988] for a similar application. They are
scaled to 40° and smoothed at lower latitudes [Cousins
et al., 2013a; and Matsuo et al., 2002].

q Zero magnitude vectors are added at lower latitudes
to constrain the solution where there is no data and the
potential is known to be low. The impact of these
vectors is seen in figure 3.
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Summary & Future Work
qWe are working to construct the EOF set and covariance
matrix, which includes tuning the weight and placement of
low latitude constraints, selecting data filters, and
investigating orthogonalization methods.

q These assimilative techniques will be compared across
background models and ionospheric conditions. The
accuracy of local and global fits will be evaluated for
different geophysical conditions.
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Figure 2: Principal components found by Richmond and Kamide
[1988], combining a larger set (244) of harmonic associated
Legendre polynomials to represent the dominant modes of
variability in plasma convection.

q In order to use the TS18 model with the SAM
technique the error covariance matrix of the TS18
model must be determined. Following Matsuo et al.,
[2002], the residuals between the observations and the
vectors predicted by the model are fitted to an
orthonormal basis, resulting in a set of 30 Empirical
Orthogonal Functions (EOFs).

q EOFs are represented in terms of coefficient vectors
(⍺ and 𝛽) which minimize the cost function below.
EOFs are determined sequentially using fixed-point
iteration, subtracting the resulting EOF, and repeating.

qWhere the indices i and j indicate spatial and
temporal dimensions, Y is the observation residual
(with weight 𝜖), and Zijk is the corresponding
component of the kth basis function in the obs. LOS
direction.

q Ultimately, an optimal set of EOF coefficients is
found using Pb, the background model error covariance
matrix defined below for Q EOFs.

Figure 4: (a) First three normalized principal components (EOFs) for the CS10 model (b) For the latest
model, the TS18. These are a sample constructed from 500 random time steps in 2010-2016 for
illustrative and investigative purposes only.
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Figure 1: (a) Northern Hemisphere SuperDARN FOVs showing
polar latitudes (green) and mid-latitudes (orange) expansions since
the CS10 model [Thomas and Shepherd, 2018] (b) The average
difference in residuals (data - model) between the TS18 [Thomas
and Shepherd, 2018] and CS10 models for strong Southwards (< -
5 nT) IMF Bz conditions for 2014 (MLT/magnetic latitude)
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Figure 5: Percent of
error captured by the
TS18 model (0), and
by EOFs 1-30.
EOFs are
constructed from the
same 500 random
time steps in 2010-
2016 used in
figure4.
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q Figure 4 illustrates the differences between the first three EOFs characterizing the
residuals for the CS10 (a) and the TS18 (b) models. The sign on each EOF is arbitrary as
alpha values for any time step can be negative or positive. Both feature a two-cell
convection mode of variability followed by other patterns in different orientations.
Because these EOFs represent the features of the residuals of the model, their differences
affirm the need to calculate a unique covariance matrix for each model used with SAM.

q Nearly 60% of the data’s variability is captured by the model (indicated by EOF 0 in
figure 5), followed by ~9% by the first EOF. Subsequent EOFs account for decreasing
amounts of error with the final few each only representing 1-2%.


